Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Partitioned formulation of contact-impact problems with stabilized contact constraints and reciprocal mass matrices

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F21%3A00543483" target="_blank" >RIV/61388998:_____/21:00543483 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/10.1002/nme.6739" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/nme.6739</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/nme.6739" target="_blank" >10.1002/nme.6739</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Partitioned formulation of contact-impact problems with stabilized contact constraints and reciprocal mass matrices

  • Popis výsledku v původním jazyce

    This work presents an efficient and accuracy-improved time explicit solution methodology for the simulation of contact-impact problems with finite elements. The proposed solution process combines four different existent techniques. First, the contact constraints are modeled by a bipenalty contact-impact formulation that incorporates stiffness and mass penalties preserving the stability limit of contact-free problems for efficient explicit time integration. Second, a method of localized Lagrange multipliers is employed, which facilitates the partitioned governing equations for each substructure along with the completely localized contact penalty forces pertaining to each free substructure. Third, a method for the direct construction of sparse inverse mass matrices of the free bodies in contact is combined with the localized Lagrange multipliers approach. Finally, an element-by-element mass matrix scaling technique that allows the extension of the time integration step is adopted to improve the overall performance of the algorithm. A judicious synthesis of the four numerical techniques has resulted in an increased stable explicit step-size that boosts the performance of the bipenalty method for contact problems. Classical contact-impact numerical examples are used to demonstrate the effectiveness of the proposed methodology.

  • Název v anglickém jazyce

    Partitioned formulation of contact-impact problems with stabilized contact constraints and reciprocal mass matrices

  • Popis výsledku anglicky

    This work presents an efficient and accuracy-improved time explicit solution methodology for the simulation of contact-impact problems with finite elements. The proposed solution process combines four different existent techniques. First, the contact constraints are modeled by a bipenalty contact-impact formulation that incorporates stiffness and mass penalties preserving the stability limit of contact-free problems for efficient explicit time integration. Second, a method of localized Lagrange multipliers is employed, which facilitates the partitioned governing equations for each substructure along with the completely localized contact penalty forces pertaining to each free substructure. Third, a method for the direct construction of sparse inverse mass matrices of the free bodies in contact is combined with the localized Lagrange multipliers approach. Finally, an element-by-element mass matrix scaling technique that allows the extension of the time integration step is adopted to improve the overall performance of the algorithm. A judicious synthesis of the four numerical techniques has resulted in an increased stable explicit step-size that boosts the performance of the bipenalty method for contact problems. Classical contact-impact numerical examples are used to demonstrate the effectiveness of the proposed methodology.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20302 - Applied mechanics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal for Numerical Methods in Engineering

  • ISSN

    0029-5981

  • e-ISSN

    1097-0207

  • Svazek periodika

    122

  • Číslo periodika v rámci svazku

    17

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    28

  • Strana od-do

    4609-4636

  • Kód UT WoS článku

    000651006700001

  • EID výsledku v databázi Scopus

    2-s2.0-85105803899