A meshless method for subsonic stall flutter analysis of turbomachinery 3D blade cascade
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F21%3A00549845" target="_blank" >RIV/61388998:_____/21:00549845 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.pan.pl/dlibra/publication/139000/edition/120815/content" target="_blank" >https://journals.pan.pl/dlibra/publication/139000/edition/120815/content</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24425/bpasts.2021.139000" target="_blank" >10.24425/bpasts.2021.139000</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A meshless method for subsonic stall flutter analysis of turbomachinery 3D blade cascade
Popis výsledku v původním jazyce
The analysis of subsonic stall flutter in turbomachinery blade cascade is carried out using a medium-fidelity reduced-order aeroelastic numerical model. The model is a type of field mesh-free approach and based on a hybrid boundary element method. The medium-fidelity flow solver is developed on the principle of viscous-inviscid two-way weak-coupling approach. The hybrid flow solver is employed to model separated flow and stall flutter in the 3D blade cascade at subsonic speed. The aerodynamic damping coefficient w.r.t. inter blade phase angle in traveling-wave mode is estimated along with other parameters. The same stability parameter is used to analyze the cascade flutter resistance regime. The estimated results are validated against experimental measurements as well as Navier-Stokes based high fidelity CFD model. The simulated results show good agreement with experimental data. Furthermore, the hybrid flow solver has managed to bring down the computational cost significantly as compared to mesh-based CFD models. Therefore, all the prime objectives of the research have been successfully achieved.n
Název v anglickém jazyce
A meshless method for subsonic stall flutter analysis of turbomachinery 3D blade cascade
Popis výsledku anglicky
The analysis of subsonic stall flutter in turbomachinery blade cascade is carried out using a medium-fidelity reduced-order aeroelastic numerical model. The model is a type of field mesh-free approach and based on a hybrid boundary element method. The medium-fidelity flow solver is developed on the principle of viscous-inviscid two-way weak-coupling approach. The hybrid flow solver is employed to model separated flow and stall flutter in the 3D blade cascade at subsonic speed. The aerodynamic damping coefficient w.r.t. inter blade phase angle in traveling-wave mode is estimated along with other parameters. The same stability parameter is used to analyze the cascade flutter resistance regime. The estimated results are validated against experimental measurements as well as Navier-Stokes based high fidelity CFD model. The simulated results show good agreement with experimental data. Furthermore, the hybrid flow solver has managed to bring down the computational cost significantly as compared to mesh-based CFD models. Therefore, all the prime objectives of the research have been successfully achieved.n
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-26779S" target="_blank" >GA20-26779S: Výzkum nestabilit dynamického stall flutteru a jejich následků na aplikace turbostrojů pomocí matematických, numerických a experimentálních metod</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Polish Academy of Sciences. Bulletin. Technical Sciences
ISSN
0239-7528
e-ISSN
2300-1917
Svazek periodika
69
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
9
Strana od-do
e139000
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85122270224