Quasi-Dynamic Approximation of Unsteady Pressure Distribution for Transonic Airfoils in Flutter
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F23%3A00571961" target="_blank" >RIV/61388998:_____/23:00571961 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/46747885:24220/23:00011152
Výsledek na webu
<a href="https://asmedigitalcollection.asme.org/turbomachinery/article/145/8/081010/1160238/Quasi-Dynamic-Approximation-of-Unsteady-Pressure?searchresult=1" target="_blank" >https://asmedigitalcollection.asme.org/turbomachinery/article/145/8/081010/1160238/Quasi-Dynamic-Approximation-of-Unsteady-Pressure?searchresult=1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1115/1.4062181" target="_blank" >10.1115/1.4062181</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quasi-Dynamic Approximation of Unsteady Pressure Distribution for Transonic Airfoils in Flutter
Popis výsledku v původním jazyce
A lack of reliable experimental data on transonic blade flutter in real turbomachines hampers the further improvement of computational design predictions for off-design operation regimes of newly-built machines. Acquiring unsteady pressure distribution on blades in real turbomachines already in operation is practically impossible. The goal of this work is to explore if an approximate unsteady pressure distribution can be created experimentally in a simple aerodynamic tunnel by composing a sequence of blade surface steady pressures acquired for gradually varying blade incidence angle offsets. An essential condition for such an approximation is the assumption that the dynamic pressure component induced by the blade motion is substantially smaller than the flow pattern changes caused by the variation of interblade channel geometry. The methodology is proposed for blade sections with prevailing two-dimensional flow. A dedicated test facility, called the blade flutter module (BFM), has been built and used for this purpose. The BFM is a linear cascade consisting of five transonic airfoils that can be operated either in a static or a dynamic regime. For the dynamic operation, any of the blades can be forcedly and independently oscillated at frequencies of up to 400 Hz with a maximum angular amplitude of 3 deg. The obtained results confirm that within the range of the test conditions, the proposed compounded quasi-dynamic approach exhibits similar characteristics to dynamically acquired unsteady blade pressures. This is true for a test range of a maximum inlet Mach number of 1.09, maximum blade oscillating frequency of 100 Hz, and measurement of unsteady pressure distribution on a blade suction surface. The corresponding blade chord based reduced frequency is 0.21.
Název v anglickém jazyce
Quasi-Dynamic Approximation of Unsteady Pressure Distribution for Transonic Airfoils in Flutter
Popis výsledku anglicky
A lack of reliable experimental data on transonic blade flutter in real turbomachines hampers the further improvement of computational design predictions for off-design operation regimes of newly-built machines. Acquiring unsteady pressure distribution on blades in real turbomachines already in operation is practically impossible. The goal of this work is to explore if an approximate unsteady pressure distribution can be created experimentally in a simple aerodynamic tunnel by composing a sequence of blade surface steady pressures acquired for gradually varying blade incidence angle offsets. An essential condition for such an approximation is the assumption that the dynamic pressure component induced by the blade motion is substantially smaller than the flow pattern changes caused by the variation of interblade channel geometry. The methodology is proposed for blade sections with prevailing two-dimensional flow. A dedicated test facility, called the blade flutter module (BFM), has been built and used for this purpose. The BFM is a linear cascade consisting of five transonic airfoils that can be operated either in a static or a dynamic regime. For the dynamic operation, any of the blades can be forcedly and independently oscillated at frequencies of up to 400 Hz with a maximum angular amplitude of 3 deg. The obtained results confirm that within the range of the test conditions, the proposed compounded quasi-dynamic approach exhibits similar characteristics to dynamically acquired unsteady blade pressures. This is true for a test range of a maximum inlet Mach number of 1.09, maximum blade oscillating frequency of 100 Hz, and measurement of unsteady pressure distribution on a blade suction surface. The corresponding blade chord based reduced frequency is 0.21.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAUSA19036" target="_blank" >LTAUSA19036: Pokročilý experimentální výzkum synchronního a nesynchronního kmitání lopatek</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Turbomachinery-Transactions of the Asme
ISSN
0889-504X
e-ISSN
1528-8900
Svazek periodika
145
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
081010
Kód UT WoS článku
001021833500016
EID výsledku v databázi Scopus
—