Flutter in a simplified blade cascade: Limits of the quasi-steady approximation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F23%3A00573425" target="_blank" >RIV/61388998:_____/23:00573425 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/46747885:24220/23:00011172
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0889974623000816" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0889974623000816</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfluidstructs.2023.103913" target="_blank" >10.1016/j.jfluidstructs.2023.103913</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Flutter in a simplified blade cascade: Limits of the quasi-steady approximation
Popis výsledku v původním jazyce
Flow-induced vibration in turbomachinery represents a major and persistent concern, especially in modern turbine and compressor designs with long and slender blades operating in transonic flow conditions. There is a wide range of computational and experimental methods for blade flutter prediction and analysis. In certain situations, the quasi-steady approximation can be utilized, considering the unsteady flow as a sequence of steady flow fields for each position of the oscillation cycle. The study is focused on experimental investigation of the limits of applicability of the quasisteady approximation in the case of a simplified linear five-blade cascade with the middle blade undergoing high-frequency torsional oscillation due to kinematic excitation. A measurement campaign of more than 100 wind tunnel runs was carried out for flow velocities ranging from high subsonic to transonic regimes (M = 0, 0.529, 0.777 and 1.018), frequency ratios 0 - 0.75 and reduced frequencies k = 0 – 0.41. A comparison of quasi-steady and time-resolved blade surface pressure measurements is reported, and the degree of unsteadiness of the airflow is quantified. For low reduced frequencies the stationary distributions match almost perfectly the time-resolved profiles. The degree of unsteadiness remains below 2% up to k = 0.1 for the subsonic and supercritical flow regimes. For reduced frequencies above 0.2, the global degree of unsteadiness increases quickly up to 10%, with local differences between the stationary and time-resolved pressure profiles up to 40%. In the case of transonic flow regime, the flow unsteadiness is generally higher and further complicated by intermittency — stochastic transition from supersonic to subsonic flow in the aft part of the blade.
Název v anglickém jazyce
Flutter in a simplified blade cascade: Limits of the quasi-steady approximation
Popis výsledku anglicky
Flow-induced vibration in turbomachinery represents a major and persistent concern, especially in modern turbine and compressor designs with long and slender blades operating in transonic flow conditions. There is a wide range of computational and experimental methods for blade flutter prediction and analysis. In certain situations, the quasi-steady approximation can be utilized, considering the unsteady flow as a sequence of steady flow fields for each position of the oscillation cycle. The study is focused on experimental investigation of the limits of applicability of the quasisteady approximation in the case of a simplified linear five-blade cascade with the middle blade undergoing high-frequency torsional oscillation due to kinematic excitation. A measurement campaign of more than 100 wind tunnel runs was carried out for flow velocities ranging from high subsonic to transonic regimes (M = 0, 0.529, 0.777 and 1.018), frequency ratios 0 - 0.75 and reduced frequencies k = 0 – 0.41. A comparison of quasi-steady and time-resolved blade surface pressure measurements is reported, and the degree of unsteadiness of the airflow is quantified. For low reduced frequencies the stationary distributions match almost perfectly the time-resolved profiles. The degree of unsteadiness remains below 2% up to k = 0.1 for the subsonic and supercritical flow regimes. For reduced frequencies above 0.2, the global degree of unsteadiness increases quickly up to 10%, with local differences between the stationary and time-resolved pressure profiles up to 40%. In the case of transonic flow regime, the flow unsteadiness is generally higher and further complicated by intermittency — stochastic transition from supersonic to subsonic flow in the aft part of the blade.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-11537S" target="_blank" >GA20-11537S: Experimentální výzkum budicí funkce flutteru v turbostrojích</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Fluids and Structures
ISSN
0889-9746
e-ISSN
1095-8622
Svazek periodika
120
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
103913
Kód UT WoS článku
001033077100001
EID výsledku v databázi Scopus
2-s2.0-85161556469