Artificial intelligence for simulation of soot distribution inside porous filter walls
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F24%3A00584646" target="_blank" >RIV/61388998:_____/24:00584646 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22340/24:43930900 RIV/68407700:21220/24:00381503
Výsledek na webu
<a href="http://www2.it.cas.cz/fm/im/im/proceeding/2024/12" target="_blank" >http://www2.it.cas.cz/fm/im/im/proceeding/2024/12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/TPFM.2024.012" target="_blank" >10.14311/TPFM.2024.012</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Artificial intelligence for simulation of soot distribution inside porous filter walls
Popis výsledku v původním jazyce
The ability to estimate the influence of the accumulated solid matter on the performance of catalytic filters (CFs) in automotive exhaust gas aftertreatment leads to the ability to estimate the required filter regeneration frequency. The ability to perform such estimates fast and only from CFs microstructural data would allow for CFs microstructure optimization. In this work, we present an approach to estimate the distribution of soot deposited in the porous structure of CFs walls. The approach leverages methods of artificial intelligence (AI) and is based on convolutional autoencoders and deep neural networks. The resulting method is trained and tested on an artificial dataset that corresponds to a single pore in the CF wall. The dataset is prepared using our previously developed transient pore-scale model of particle deposit formation in the 3D microstructure of the catalytic filter wall. The developed AI model yields good results in terms of total amount of accumulated soot, but is less accurate in its distribution. As a result, using the estimated particle deposits to calculate the pressure drop and filtration efficiency of the artificial pore allows to estimate these two CF performancenindicators with 33.6 % accuracy.
Název v anglickém jazyce
Artificial intelligence for simulation of soot distribution inside porous filter walls
Popis výsledku anglicky
The ability to estimate the influence of the accumulated solid matter on the performance of catalytic filters (CFs) in automotive exhaust gas aftertreatment leads to the ability to estimate the required filter regeneration frequency. The ability to perform such estimates fast and only from CFs microstructural data would allow for CFs microstructure optimization. In this work, we present an approach to estimate the distribution of soot deposited in the porous structure of CFs walls. The approach leverages methods of artificial intelligence (AI) and is based on convolutional autoencoders and deep neural networks. The resulting method is trained and tested on an artificial dataset that corresponds to a single pore in the CF wall. The dataset is prepared using our previously developed transient pore-scale model of particle deposit formation in the 3D microstructure of the catalytic filter wall. The developed AI model yields good results in terms of total amount of accumulated soot, but is less accurate in its distribution. As a result, using the estimated particle deposits to calculate the pressure drop and filtration efficiency of the artificial pore allows to estimate these two CF performancenindicators with 33.6 % accuracy.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-12227S" target="_blank" >GA22-12227S: Počítačový návrh katalytických filtrů zohledňující vliv zachycených částic</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Topical Problems of Fluid Mechanics
ISBN
978-80-87012-88-8
ISSN
2336-5781
e-ISSN
—
Počet stran výsledku
8
Strana od-do
85-92
Název nakladatele
Institute of Thermomechanics AS CR, v. v. i.
Místo vydání
Prague
Místo konání akce
Prague
Datum konání akce
21. 2. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001242655400012