Higher-order inverse mass matrices for the explicit transient analysis of heterogeneous solids
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F24%3A00585736" target="_blank" >RIV/61388998:_____/24:00585736 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/71226401:_____/24:N0100936
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1002/nme.7457" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/nme.7457</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/nme.7457" target="_blank" >10.1002/nme.7457</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Higher-order inverse mass matrices for the explicit transient analysis of heterogeneous solids
Popis výsledku v původním jazyce
New methods are presented for the direct computation of higher-order inverse mass matrices (also called reciprocal mass matrices) that are used for explicit transient finite element analysis. The motivation of this work lies in the need of having appropriate sparse inverse mass matrices, which present the same structure as the consistent mass matrix, preserve the total mass, predict suitable frequency spectrum and dictate sufficiently large critical time step sizes. For an efficient evaluation of the reciprocal mass matrix, the projection matrix should be diagonal. This condition can be satisfied by adopting dual shape functions for the momentum field, generated from the same shape functions used for the displacement field. A theoretically consistent derivation of the inverse mass matrix is based on the three-field Hamilton principle and requires the projection matrix to be evaluated from the integral of these shape functions. Unfortunately, for higher-order FE shape functions and serendipity FE elements, the projection matrix is not positive definitive and can not be employed. Therefore, we study several lumping procedures for higher order reciprocal mass matrices considering their effect on total-mass preserving, frequency spectra and accuracy in explicit transient simulations. The article closes with several numerical examples showing suitability of the direct inverse mass matrix in dynamics.
Název v anglickém jazyce
Higher-order inverse mass matrices for the explicit transient analysis of heterogeneous solids
Popis výsledku anglicky
New methods are presented for the direct computation of higher-order inverse mass matrices (also called reciprocal mass matrices) that are used for explicit transient finite element analysis. The motivation of this work lies in the need of having appropriate sparse inverse mass matrices, which present the same structure as the consistent mass matrix, preserve the total mass, predict suitable frequency spectrum and dictate sufficiently large critical time step sizes. For an efficient evaluation of the reciprocal mass matrix, the projection matrix should be diagonal. This condition can be satisfied by adopting dual shape functions for the momentum field, generated from the same shape functions used for the displacement field. A theoretically consistent derivation of the inverse mass matrix is based on the three-field Hamilton principle and requires the projection matrix to be evaluated from the integral of these shape functions. Unfortunately, for higher-order FE shape functions and serendipity FE elements, the projection matrix is not positive definitive and can not be employed. Therefore, we study several lumping procedures for higher order reciprocal mass matrices considering their effect on total-mass preserving, frequency spectra and accuracy in explicit transient simulations. The article closes with several numerical examples showing suitability of the direct inverse mass matrix in dynamics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-06220S" target="_blank" >GA23-06220S: Flexoelektrické periodické struktury pro transport tekutin a sběr energie</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal for Numerical Methods in Engineering
ISSN
0029-5981
e-ISSN
1097-0207
Svazek periodika
125
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
25
Strana od-do
e7457
Kód UT WoS článku
001162858400001
EID výsledku v databázi Scopus
2-s2.0-85185680561