A review of temporal and spatial dispersions of linear and quadratic finite elements in linear elastic wave propagation problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F24%3A00597745" target="_blank" >RIV/61388998:_____/24:00597745 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/71226401:_____/24:N0100986
Výsledek na webu
<a href="https://kirj.ee/proceedings-of-the-estonian-academy-of-sciences-publications/?filter%5Byear%5D=2024&filter%5Bissue%5D=1802&filter%5Bpublication%5D=16376&v=928568b84963" target="_blank" >https://kirj.ee/proceedings-of-the-estonian-academy-of-sciences-publications/?filter%5Byear%5D=2024&filter%5Bissue%5D=1802&filter%5Bpublication%5D=16376&v=928568b84963</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3176/proc.2024.3.11" target="_blank" >10.3176/proc.2024.3.11</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A review of temporal and spatial dispersions of linear and quadratic finite elements in linear elastic wave propagation problems
Popis výsledku v původním jazyce
The dispersion behaviour of the finite element method, applied to the treatment of stress wave propagation tasks in an elastic solid continuum, is reviewed and complemented with the authors’ contributions in the field, along with substantial details of finite element technology. It is shown how finite element dispersion disqualifies to a certain extent the stress wave propagation modelling and, as such, cannot be completely eradicated. The paper, however, reveals the ways how the dispersion effect (actually, modelling errors) could be minimized. The effects of spatial and temporal dispersions of the finite element method are treated. 1D and 2D linear and quadratic finite elements and their suitability are analysed for use with implicit and explicit integration methods. Historical as well as new, up-to-date approaches are also reviewed. The paper closes with recommendations for values of mesh size and timestep size, mass matrices and direct time integrations with respect to dispersion errors in finite element modelling of elastic wave propagation problems in solids.
Název v anglickém jazyce
A review of temporal and spatial dispersions of linear and quadratic finite elements in linear elastic wave propagation problems
Popis výsledku anglicky
The dispersion behaviour of the finite element method, applied to the treatment of stress wave propagation tasks in an elastic solid continuum, is reviewed and complemented with the authors’ contributions in the field, along with substantial details of finite element technology. It is shown how finite element dispersion disqualifies to a certain extent the stress wave propagation modelling and, as such, cannot be completely eradicated. The paper, however, reveals the ways how the dispersion effect (actually, modelling errors) could be minimized. The effects of spatial and temporal dispersions of the finite element method are treated. 1D and 2D linear and quadratic finite elements and their suitability are analysed for use with implicit and explicit integration methods. Historical as well as new, up-to-date approaches are also reviewed. The paper closes with recommendations for values of mesh size and timestep size, mass matrices and direct time integrations with respect to dispersion errors in finite element modelling of elastic wave propagation problems in solids.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/GC23-04676J" target="_blank" >GC23-04676J: Řiditelná úchopová mechanika: Modelování, řízení a experimenty</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Proceedings of the Estonian Academy of Sciences
ISSN
1736-6046
e-ISSN
1736-7530
Svazek periodika
73
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
EE - Estonská republika
Počet stran výsledku
38
Strana od-do
279-316
Kód UT WoS článku
001294430900002
EID výsledku v databázi Scopus
2-s2.0-85205133427