Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Vlnovody s kombinovanými Dirichletovými a Robinovými hraničními podmínkami

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F06%3A00089398" target="_blank" >RIV/61389005:_____/06:00089398 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Waveguides with combined Dirichlet and Robin boundary conditions

  • Popis výsledku v původním jazyce

    We consider the Laplacian in a curved two-dimensional strip of constant width squeezed between two curves, subject to Dirichlet boundary conditions on one of the curves and variable Robin boundary conditions on the other. We prove that, for certain typesof Robin boundary conditions, the spectral threshold of the Laplacian is estimated from below by the lowest eigenvalue of the Laplacian in a Dirichlet-Robin annulus determined by the geometry of the strip. Moreover, we show that an appropriate combination of the geometric setting and boundary conditions leads to a Hardy-type inequality in infinite strips. As an application, we derive certain stability of the spectrum for the Laplacian in Dirichlet-Neumann strips along a class of curves of sign-changingcurvature, improving in this way an initial result of Dittrich and Kriz (J. Phys. A, 35: L269-275, 2002).

  • Název v anglickém jazyce

    Waveguides with combined Dirichlet and Robin boundary conditions

  • Popis výsledku anglicky

    We consider the Laplacian in a curved two-dimensional strip of constant width squeezed between two curves, subject to Dirichlet boundary conditions on one of the curves and variable Robin boundary conditions on the other. We prove that, for certain typesof Robin boundary conditions, the spectral threshold of the Laplacian is estimated from below by the lowest eigenvalue of the Laplacian in a Dirichlet-Robin annulus determined by the geometry of the strip. Moreover, we show that an appropriate combination of the geometric setting and boundary conditions leads to a Hardy-type inequality in infinite strips. As an application, we derive certain stability of the spectrum for the Laplacian in Dirichlet-Neumann strips along a class of curves of sign-changingcurvature, improving in this way an initial result of Dittrich and Kriz (J. Phys. A, 35: L269-275, 2002).

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BE - Teoretická fyzika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LC06002" target="_blank" >LC06002: Dopplerův ústav pro matematickou fyziku a aplikovanou matematiku</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2006

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematical Physics, Analysis and Geometry

  • ISSN

    1385-0172

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    18

  • Strana od-do

    335-352

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus