Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Lokalisace nodalni mnoziny pro tenke krive trubice

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F08%3A00311171" target="_blank" >RIV/61389005:_____/08:00311171 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Location of the nodal set for thin curved tubes

  • Popis výsledku v původním jazyce

    The Dirichlet Laplacian in curved tubes of arbitrary constant cross-section rotating together with the Tang frame along a bounded curve in Euclidean spaces of arbitrary dimension is investigated in the limit when the volume of the cross-section diminishes. We show that spectral properties of the Laplacian are, in this limit, approximated well by those of the sum of the Dirichlet Laplacian in the cross-section and a one-dimensional Schrodinger operator whose potential is expressed solely in terms of thefirst curvature of the reference curve. In particular, we establish the convergence of eigenvalues, the uniform convergence of eigenfunctions and locate the nodal set of the Dirichlet Laplacian in the tube near nodal points of the one-dimensional Schrodinger operator. As a consequence, we prove the "nodal-line conjecture" for a class of non-convex and possibly multiply connected domains.

  • Název v anglickém jazyce

    Location of the nodal set for thin curved tubes

  • Popis výsledku anglicky

    The Dirichlet Laplacian in curved tubes of arbitrary constant cross-section rotating together with the Tang frame along a bounded curve in Euclidean spaces of arbitrary dimension is investigated in the limit when the volume of the cross-section diminishes. We show that spectral properties of the Laplacian are, in this limit, approximated well by those of the sum of the Dirichlet Laplacian in the cross-section and a one-dimensional Schrodinger operator whose potential is expressed solely in terms of thefirst curvature of the reference curve. In particular, we establish the convergence of eigenvalues, the uniform convergence of eigenfunctions and locate the nodal set of the Dirichlet Laplacian in the tube near nodal points of the one-dimensional Schrodinger operator. As a consequence, we prove the "nodal-line conjecture" for a class of non-convex and possibly multiply connected domains.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BE - Teoretická fyzika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LC06002" target="_blank" >LC06002: Dopplerův ústav pro matematickou fyziku a aplikovanou matematiku</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Indiana University Mathematics Journal

  • ISSN

    0022-2518

  • e-ISSN

  • Svazek periodika

    57

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    33

  • Strana od-do

  • Kód UT WoS článku

    000254468900010

  • EID výsledku v databázi Scopus