Vše
Vše

Co hledáte?

Vše
Projekty
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Lokalisace nodalni mnoziny pro tenke krive trubice

Popis výsledku

Zabyvame se dirichletovskym laplacianem v krivych trubicich v limite scvrkavajiciho se prurezu. Ukazujeme, ze spektralni vlastnosti laplacianu lze v teto limite aproximovat jednodimensionalnim schroedingerovskym operatorem, jehoz potencial zavisi na krivosti referencni krivky trubice. Jako aplikaci dokazujeme Payneovu "hypotesu o nodalnich carach" pro takovouto tridu nekonvexnich a pripadne i vicesouvislych oblasti.

Klíčová slova

Dirichlet Laplaciannodal settubes

Identifikátory výsledku

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Location of the nodal set for thin curved tubes

  • Popis výsledku v původním jazyce

    The Dirichlet Laplacian in curved tubes of arbitrary constant cross-section rotating together with the Tang frame along a bounded curve in Euclidean spaces of arbitrary dimension is investigated in the limit when the volume of the cross-section diminishes. We show that spectral properties of the Laplacian are, in this limit, approximated well by those of the sum of the Dirichlet Laplacian in the cross-section and a one-dimensional Schrodinger operator whose potential is expressed solely in terms of thefirst curvature of the reference curve. In particular, we establish the convergence of eigenvalues, the uniform convergence of eigenfunctions and locate the nodal set of the Dirichlet Laplacian in the tube near nodal points of the one-dimensional Schrodinger operator. As a consequence, we prove the "nodal-line conjecture" for a class of non-convex and possibly multiply connected domains.

  • Název v anglickém jazyce

    Location of the nodal set for thin curved tubes

  • Popis výsledku anglicky

    The Dirichlet Laplacian in curved tubes of arbitrary constant cross-section rotating together with the Tang frame along a bounded curve in Euclidean spaces of arbitrary dimension is investigated in the limit when the volume of the cross-section diminishes. We show that spectral properties of the Laplacian are, in this limit, approximated well by those of the sum of the Dirichlet Laplacian in the cross-section and a one-dimensional Schrodinger operator whose potential is expressed solely in terms of thefirst curvature of the reference curve. In particular, we establish the convergence of eigenvalues, the uniform convergence of eigenfunctions and locate the nodal set of the Dirichlet Laplacian in the tube near nodal points of the one-dimensional Schrodinger operator. As a consequence, we prove the "nodal-line conjecture" for a class of non-convex and possibly multiply connected domains.

Klasifikace

  • Druh

    Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BE - Teoretická fyzika

  • OECD FORD obor

Návaznosti výsledku

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Indiana University Mathematics Journal

  • ISSN

    0022-2518

  • e-ISSN

  • Svazek periodika

    57

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    33

  • Strana od-do

  • Kód UT WoS článku

    000254468900010

  • EID výsledku v databázi Scopus

Druh výsledku

Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

Jx

CEP

BE - Teoretická fyzika

Rok uplatnění

2008