The effective Hamiltonian in curved quantum waveguides under mild regularity assuptions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F12%3A00196871" target="_blank" >RIV/68407700:21340/12:00196871 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1142/S0129055X12500183" target="_blank" >http://dx.doi.org/10.1142/S0129055X12500183</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0129055X12500183" target="_blank" >10.1142/S0129055X12500183</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The effective Hamiltonian in curved quantum waveguides under mild regularity assuptions
Popis výsledku v původním jazyce
The Dirichlet Laplacian in a curved three-dimensional tube built along a spatial (bounded or unbounded) curve is investigated in the limit when the uniform cross-section of the tube diminishes. Both deformations due to bending and twisting of the tube are considered. We show that the Laplacian converges in a norm-resolvent sense to the well-known one-dimensional Schrödinger operator whose potential is expressed in terms of the curvature of the reference curve, the twisting angle and a constant measuringthe asymmetry of the cross-section. Contrary to previous results, we allow the reference curves to have non-continuous and possibly vanishing curvature. For such curves, the distinguished Frenet frame standardly used to define the tube need not exist and, moreover, the known approaches to prove the result for unbounded tubes do not work. To establish the norm-resolvent convergence under the minimal regularity assumptions, we use an alternative frame defined by a parallel transport along
Název v anglickém jazyce
The effective Hamiltonian in curved quantum waveguides under mild regularity assuptions
Popis výsledku anglicky
The Dirichlet Laplacian in a curved three-dimensional tube built along a spatial (bounded or unbounded) curve is investigated in the limit when the uniform cross-section of the tube diminishes. Both deformations due to bending and twisting of the tube are considered. We show that the Laplacian converges in a norm-resolvent sense to the well-known one-dimensional Schrödinger operator whose potential is expressed in terms of the curvature of the reference curve, the twisting angle and a constant measuringthe asymmetry of the cross-section. Contrary to previous results, we allow the reference curves to have non-continuous and possibly vanishing curvature. For such curves, the distinguished Frenet frame standardly used to define the tube need not exist and, moreover, the known approaches to prove the result for unbounded tubes do not work. To establish the norm-resolvent convergence under the minimal regularity assumptions, we use an alternative frame defined by a parallel transport along
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Reviews in Mathematical Physics
ISSN
0129-055X
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
07
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
39
Strana od-do
"1250018-1"-"1250018-39"
Kód UT WoS článku
000306590500005
EID výsledku v databázi Scopus
—