Parity-Time Symmetry and the Toy Models of Gain-Loss Dynamics near the Real Kato's Exceptional Points
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F16%3A00461197" target="_blank" >RIV/61389005:_____/16:00461197 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3390/sym8060052" target="_blank" >http://dx.doi.org/10.3390/sym8060052</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym8060052" target="_blank" >10.3390/sym8060052</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parity-Time Symmetry and the Toy Models of Gain-Loss Dynamics near the Real Kato's Exceptional Points
Popis výsledku v původním jazyce
For a given operator D(t) of an observable in theoretical parity-time symmetric quantum physics (or for its evolution-generator analogues in the experimental gain-loss classical optics, etc.) the instant t(critical) of a spontaneous breakdown of the parity-time alias gain-loss symmetry should be given, in the rigorous language of mathematics, the Kato's name of an "exceptional point", t(critical) = t((EP)). In the majority of conventional applications the exceptional point (EP) values are not real. In our paper, we pay attention to several exactly tractable toy-model evolutions for which at least some of the values of t((EP)) become real. These values are interpreted as "instants of a catastrophe", be it classical or quantum. In the classical optical setting the discrete nature of our toy models might make them amenable to simulations. In the latter context the instant of Big Bang is mentioned as an illustrative sample of possible physical meaning of such an EP catastrophe in quantum cosmology.
Název v anglickém jazyce
Parity-Time Symmetry and the Toy Models of Gain-Loss Dynamics near the Real Kato's Exceptional Points
Popis výsledku anglicky
For a given operator D(t) of an observable in theoretical parity-time symmetric quantum physics (or for its evolution-generator analogues in the experimental gain-loss classical optics, etc.) the instant t(critical) of a spontaneous breakdown of the parity-time alias gain-loss symmetry should be given, in the rigorous language of mathematics, the Kato's name of an "exceptional point", t(critical) = t((EP)). In the majority of conventional applications the exceptional point (EP) values are not real. In our paper, we pay attention to several exactly tractable toy-model evolutions for which at least some of the values of t((EP)) become real. These values are interpreted as "instants of a catastrophe", be it classical or quantum. In the classical optical setting the discrete nature of our toy models might make them amenable to simulations. In the latter context the instant of Big Bang is mentioned as an illustrative sample of possible physical meaning of such an EP catastrophe in quantum cosmology.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BE - Teoretická fyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-22945S" target="_blank" >GA16-22945S: Kvantová Wheelerova – DeWittova rovnice a její unitárně evoluční interpretace</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Symmetry-Basel
ISSN
2073-8994
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
000378737600015
EID výsledku v databázi Scopus
2-s2.0-84975709191