Periodic quantum graphs from the Bethe-Sommerfeld perspective
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F17%3A00486254" target="_blank" >RIV/61389005:_____/17:00486254 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21340/17:00319053
Výsledek na webu
<a href="http://dx.doi.org/10.1088/1751-8121/aa8d8d" target="_blank" >http://dx.doi.org/10.1088/1751-8121/aa8d8d</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8121/aa8d8d" target="_blank" >10.1088/1751-8121/aa8d8d</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Periodic quantum graphs from the Bethe-Sommerfeld perspective
Popis výsledku v původním jazyce
The paper is concerned with the number of open gaps in spectra of periodic quantum graphs. The well-known conjecture by Bethe and Sommerfeld (1933) says that the number of open spectral gaps for a system periodic in more than one direction is finite. To date, its validity is established for numerous systems, however, it is known that quantum graphs do not comply with this law as their spectra have typically infinitely many gaps, or no gaps at all. These facts gave rise to the question about the existence of quantum graphs with the 'Bethe-Sommerfeld property', that is, featuring a nonzero finite number of gaps in the spectrum. In this paper we prove that the said property is impossible for graphs with vertex couplings which are either scale-invariant or associated to scale-invariant ones in a particular way. On the other hand, we demonstrate that quantum graphs with a finite number of open gaps do indeed exist. We illustrate this phenomenon on an example of a rectangular lattice with a delta coupling at the vertices and a suitable irrational ratio of the edges. Our result allows one to find explicitly a quantum graph with any prescribed exact number of gaps, which is the first such example to date.
Název v anglickém jazyce
Periodic quantum graphs from the Bethe-Sommerfeld perspective
Popis výsledku anglicky
The paper is concerned with the number of open gaps in spectra of periodic quantum graphs. The well-known conjecture by Bethe and Sommerfeld (1933) says that the number of open spectral gaps for a system periodic in more than one direction is finite. To date, its validity is established for numerous systems, however, it is known that quantum graphs do not comply with this law as their spectra have typically infinitely many gaps, or no gaps at all. These facts gave rise to the question about the existence of quantum graphs with the 'Bethe-Sommerfeld property', that is, featuring a nonzero finite number of gaps in the spectrum. In this paper we prove that the said property is impossible for graphs with vertex couplings which are either scale-invariant or associated to scale-invariant ones in a particular way. On the other hand, we demonstrate that quantum graphs with a finite number of open gaps do indeed exist. We illustrate this phenomenon on an example of a rectangular lattice with a delta coupling at the vertices and a suitable irrational ratio of the edges. Our result allows one to find explicitly a quantum graph with any prescribed exact number of gaps, which is the first such example to date.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-01706S" target="_blank" >GA17-01706S: Matematicko-fyzikální modely nových materiálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physics A-Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
—
Svazek periodika
50
Číslo periodika v rámci svazku
45
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
32
Strana od-do
—
Kód UT WoS článku
000423284300001
EID výsledku v databázi Scopus
2-s2.0-85032215939