Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Periodic quantum graphs from the Bethe-Sommerfeld perspective

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F17%3A00486254" target="_blank" >RIV/61389005:_____/17:00486254 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21340/17:00319053

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1088/1751-8121/aa8d8d" target="_blank" >http://dx.doi.org/10.1088/1751-8121/aa8d8d</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1751-8121/aa8d8d" target="_blank" >10.1088/1751-8121/aa8d8d</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Periodic quantum graphs from the Bethe-Sommerfeld perspective

  • Popis výsledku v původním jazyce

    The paper is concerned with the number of open gaps in spectra of periodic quantum graphs. The well-known conjecture by Bethe and Sommerfeld (1933) says that the number of open spectral gaps for a system periodic in more than one direction is finite. To date, its validity is established for numerous systems, however, it is known that quantum graphs do not comply with this law as their spectra have typically infinitely many gaps, or no gaps at all. These facts gave rise to the question about the existence of quantum graphs with the 'Bethe-Sommerfeld property', that is, featuring a nonzero finite number of gaps in the spectrum. In this paper we prove that the said property is impossible for graphs with vertex couplings which are either scale-invariant or associated to scale-invariant ones in a particular way. On the other hand, we demonstrate that quantum graphs with a finite number of open gaps do indeed exist. We illustrate this phenomenon on an example of a rectangular lattice with a delta coupling at the vertices and a suitable irrational ratio of the edges. Our result allows one to find explicitly a quantum graph with any prescribed exact number of gaps, which is the first such example to date.

  • Název v anglickém jazyce

    Periodic quantum graphs from the Bethe-Sommerfeld perspective

  • Popis výsledku anglicky

    The paper is concerned with the number of open gaps in spectra of periodic quantum graphs. The well-known conjecture by Bethe and Sommerfeld (1933) says that the number of open spectral gaps for a system periodic in more than one direction is finite. To date, its validity is established for numerous systems, however, it is known that quantum graphs do not comply with this law as their spectra have typically infinitely many gaps, or no gaps at all. These facts gave rise to the question about the existence of quantum graphs with the 'Bethe-Sommerfeld property', that is, featuring a nonzero finite number of gaps in the spectrum. In this paper we prove that the said property is impossible for graphs with vertex couplings which are either scale-invariant or associated to scale-invariant ones in a particular way. On the other hand, we demonstrate that quantum graphs with a finite number of open gaps do indeed exist. We illustrate this phenomenon on an example of a rectangular lattice with a delta coupling at the vertices and a suitable irrational ratio of the edges. Our result allows one to find explicitly a quantum graph with any prescribed exact number of gaps, which is the first such example to date.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-01706S" target="_blank" >GA17-01706S: Matematicko-fyzikální modely nových materiálů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Physics A-Mathematical and Theoretical

  • ISSN

    1751-8113

  • e-ISSN

  • Svazek periodika

    50

  • Číslo periodika v rámci svazku

    45

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    32

  • Strana od-do

  • Kód UT WoS článku

    000423284300001

  • EID výsledku v databázi Scopus

    2-s2.0-85032215939