On Dirac operators in R3 with electrostatic and Lorentz scalar delta-shell interactions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F19%3A00561421" target="_blank" >RIV/61389005:_____/19:00561421 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s40509-019-00186-6" target="_blank" >https://doi.org/10.1007/s40509-019-00186-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40509-019-00186-6" target="_blank" >10.1007/s40509-019-00186-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Dirac operators in R3 with electrostatic and Lorentz scalar delta-shell interactions
Popis výsledku v původním jazyce
In this article, Dirac operators A eta,tau coupled with combinations of electrostatic and Lorentz scalar delta -shell interactions of constant strength eta and tau, respectively, supported on compact surfaces Sigma subset of R3 are studied. In the rigorous definition of these operators, the delta -potentials are modeled by coupling conditions at Sigma. In the proof of the self-adjointness of A eta,tau, a Krein-type resolvent formula and a Birman-Schwinger principle are obtained. With their help, a detailed study of the qualitative spectral properties of A eta,tau is possible. In particular, the essential spectrum of A eta,tau is determined, it is shown that at most finitely many discrete eigenvalues can appear, and several symmetry relations in the point spectrum are obtained. Moreover, the nonrelativistic limit of A eta,tau is computed and it is discussed that for some special interaction strengths, A eta,tau is decoupled to two operators acting in the domains with the common boundary Sigma.
Název v anglickém jazyce
On Dirac operators in R3 with electrostatic and Lorentz scalar delta-shell interactions
Popis výsledku anglicky
In this article, Dirac operators A eta,tau coupled with combinations of electrostatic and Lorentz scalar delta -shell interactions of constant strength eta and tau, respectively, supported on compact surfaces Sigma subset of R3 are studied. In the rigorous definition of these operators, the delta -potentials are modeled by coupling conditions at Sigma. In the proof of the self-adjointness of A eta,tau, a Krein-type resolvent formula and a Birman-Schwinger principle are obtained. With their help, a detailed study of the qualitative spectral properties of A eta,tau is possible. In particular, the essential spectrum of A eta,tau is determined, it is shown that at most finitely many discrete eigenvalues can appear, and several symmetry relations in the point spectrum are obtained. Moreover, the nonrelativistic limit of A eta,tau is computed and it is discussed that for some special interaction strengths, A eta,tau is decoupled to two operators acting in the domains with the common boundary Sigma.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Quantum Studies: Mathematics and Foundations
ISSN
2196-5609
e-ISSN
2196-5617
Svazek periodika
6
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
295-314
Kód UT WoS článku
000612865800003
EID výsledku v databázi Scopus
2-s2.0-85081344355