Optimisation of the Lowest Robin Eigenvalue in the Exterior of a Compact Set, II: Non-Convex Domains and Higher Dimensions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F20%3A00524214" target="_blank" >RIV/61389005:_____/20:00524214 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21340/20:00328025
Výsledek na webu
<a href="https://doi.org/10.1007/s11118-018-9752-0" target="_blank" >https://doi.org/10.1007/s11118-018-9752-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11118-018-9752-0" target="_blank" >10.1007/s11118-018-9752-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimisation of the Lowest Robin Eigenvalue in the Exterior of a Compact Set, II: Non-Convex Domains and Higher Dimensions
Popis výsledku v původním jazyce
We consider the problem of geometric optimisation of the lowest eigenvalue of the Laplacian in the exterior of a compact set in any dimension, subject to attractive Robin boundary conditions. As an improvement upon our previous work (Krejcirik and Lotoreichik J. Convex Anal. 25, 319-337, 2018), we show that under either a constraint of fixed perimeter or area, the maximiser within the class of exteriors of simply connected planar sets is always the exterior of a disk, without the need of convexity assumption. Moreover, we generalise the result to disconnected compact planar sets. Namely, we prove that under a constraint of fixed average value of the perimeter over all the connected components, the maximiser within the class of disconnected compact planar sets, consisting of finitely many simply connected components, is again a disk. In higher dimensions, we prove a completely new result that the lowest point in the spectrum is maximised by the exterior of a ball among all sets exterior to bounded convex sets satisfying a constraint on the integral of a dimensional power of the mean curvature of their boundaries. Furthermore, it follows that the critical coupling at which the lowest point in the spectrum becomes a discrete eigenvalue emerging from the essential spectrum is minimised under the same constraint by the critical coupling for the exterior of a ball.
Název v anglickém jazyce
Optimisation of the Lowest Robin Eigenvalue in the Exterior of a Compact Set, II: Non-Convex Domains and Higher Dimensions
Popis výsledku anglicky
We consider the problem of geometric optimisation of the lowest eigenvalue of the Laplacian in the exterior of a compact set in any dimension, subject to attractive Robin boundary conditions. As an improvement upon our previous work (Krejcirik and Lotoreichik J. Convex Anal. 25, 319-337, 2018), we show that under either a constraint of fixed perimeter or area, the maximiser within the class of exteriors of simply connected planar sets is always the exterior of a disk, without the need of convexity assumption. Moreover, we generalise the result to disconnected compact planar sets. Namely, we prove that under a constraint of fixed average value of the perimeter over all the connected components, the maximiser within the class of disconnected compact planar sets, consisting of finitely many simply connected components, is again a disk. In higher dimensions, we prove a completely new result that the lowest point in the spectrum is maximised by the exterior of a ball among all sets exterior to bounded convex sets satisfying a constraint on the integral of a dimensional power of the mean curvature of their boundaries. Furthermore, it follows that the critical coupling at which the lowest point in the spectrum becomes a discrete eigenvalue emerging from the essential spectrum is minimised under the same constraint by the critical coupling for the exterior of a ball.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Potential Analysis
ISSN
0926-2601
e-ISSN
—
Svazek periodika
52
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
601-614
Kód UT WoS článku
000528380600003
EID výsledku v databázi Scopus
2-s2.0-85059834304