Biological Applications of Short Wavelength Microscopy Based on Compact, Laser-Produced Gas-Puff Plasma Source
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F20%3A00538338" target="_blank" >RIV/61389005:_____/20:00538338 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/app10238338" target="_blank" >https://doi.org/10.3390/app10238338</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app10238338" target="_blank" >10.3390/app10238338</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Biological Applications of Short Wavelength Microscopy Based on Compact, Laser-Produced Gas-Puff Plasma Source
Popis výsledku v původním jazyce
Short wavelength compact microscopy setups, operating in the biological-dedicated 'water window' spectral range, perform sample imaging with a nanometer spatial resolution, employing complementary tools to the existing imaging techniques.nnOver the last decades, remarkable efforts have been made to improve the resolution in photon-based microscopes. The employment of compact sources based on table-top laser-produced soft X-ray (SXR) in the 'water window' spectral range (lambda = 2.3-4.4 nm) and extreme ultraviolet (EUV) plasma allowed to overcome the limitations imposed by large facilities, such as synchrotrons and X-ray free electron lasers (XFEL), because of their high complexity, costs, and limited user access. A laser-plasma double stream gas-puff target source represents a powerful tool for microscopy operating in transmission mode, significantly improving the spatial resolution into the nanometric scale, comparing to the traditional visible light (optical) microscopes. Such an approach allows generating the plasma efficiently, without debris, providing a high flux of EUV and SXR photons. In this review, we present the development and optimization of desktop imaging systems: a EUV and an SXR full field microscope, allowing to achieve a sub-50 nm spatial resolution with short exposure time and an SXR contact microscope, capable to resolve internal structures in a thin layer of sensitive photoresist. Details about the source, as well as imaging results for biological applications, will be presented and discussed.
Název v anglickém jazyce
Biological Applications of Short Wavelength Microscopy Based on Compact, Laser-Produced Gas-Puff Plasma Source
Popis výsledku anglicky
Short wavelength compact microscopy setups, operating in the biological-dedicated 'water window' spectral range, perform sample imaging with a nanometer spatial resolution, employing complementary tools to the existing imaging techniques.nnOver the last decades, remarkable efforts have been made to improve the resolution in photon-based microscopes. The employment of compact sources based on table-top laser-produced soft X-ray (SXR) in the 'water window' spectral range (lambda = 2.3-4.4 nm) and extreme ultraviolet (EUV) plasma allowed to overcome the limitations imposed by large facilities, such as synchrotrons and X-ray free electron lasers (XFEL), because of their high complexity, costs, and limited user access. A laser-plasma double stream gas-puff target source represents a powerful tool for microscopy operating in transmission mode, significantly improving the spatial resolution into the nanometric scale, comparing to the traditional visible light (optical) microscopes. Such an approach allows generating the plasma efficiently, without debris, providing a high flux of EUV and SXR photons. In this review, we present the development and optimization of desktop imaging systems: a EUV and an SXR full field microscope, allowing to achieve a sub-50 nm spatial resolution with short exposure time and an SXR contact microscope, capable to resolve internal structures in a thin layer of sensitive photoresist. Details about the source, as well as imaging results for biological applications, will be presented and discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Sciences-Basel
ISSN
2076-3417
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
23
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
32
Strana od-do
8338
Kód UT WoS článku
000597110900001
EID výsledku v databázi Scopus
2-s2.0-85096575011