Nanoscale imaging and optimization of a compact "water window" SXR microscope
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F15%3A00374693" target="_blank" >RIV/68407700:21340/15:00374693 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1117/12.2181436" target="_blank" >https://doi.org/10.1117/12.2181436</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1117/12.2181436" target="_blank" >10.1117/12.2181436</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nanoscale imaging and optimization of a compact "water window" SXR microscope
Popis výsledku v původním jazyce
The wavelength diffraction limit, described by the Rayleigh criterion, can be overcome if short wavelength radiations are employed, thus it is possible to resolve smaller features by the use of radiation in the extreme ultraviolet (EUV) and soft X-ray (SXR) spectral ranges. In particular way, radiation from the "water window" spectral range, which extends between K-absorption edges of carbon and oxygen (280 divided by 540 eV), could be used in order to obtain high-contrast biological imaging. Laser-plasma double stream gas puff target source is suitable for SXR microscopy in the "water window" spectral range, which recently allowed to develop a system, operating at He-like nitrogen spectral line lambda=2.88 nm, which permits to obtain images with half-pitch spatial resolution of similar to 60 nm, exposure time as low as a few seconds and represents an important alternative for high resolution imaging for biomedical applications, material science and nanotechnology using a very compact laser source. The goal of measurements, presented herein, is to show SXR images of various biological samples, proving high contrast in the "water window" and characterize in more detail such compact microscopy system, based on a laser plasma source with a double stream gas puff target and a Fresnel zone plate (FZP) objective. The influence of various acquisition parameters on the quality of the obtained SXR images, expressed in terms of a signal-to-noise (SNR) will be demonstrated. Moreover, because the measurements are performed on SXR images, similar measurements might be performed as a benchmark in order to characterize different imaging systems as well.
Název v anglickém jazyce
Nanoscale imaging and optimization of a compact "water window" SXR microscope
Popis výsledku anglicky
The wavelength diffraction limit, described by the Rayleigh criterion, can be overcome if short wavelength radiations are employed, thus it is possible to resolve smaller features by the use of radiation in the extreme ultraviolet (EUV) and soft X-ray (SXR) spectral ranges. In particular way, radiation from the "water window" spectral range, which extends between K-absorption edges of carbon and oxygen (280 divided by 540 eV), could be used in order to obtain high-contrast biological imaging. Laser-plasma double stream gas puff target source is suitable for SXR microscopy in the "water window" spectral range, which recently allowed to develop a system, operating at He-like nitrogen spectral line lambda=2.88 nm, which permits to obtain images with half-pitch spatial resolution of similar to 60 nm, exposure time as low as a few seconds and represents an important alternative for high resolution imaging for biomedical applications, material science and nanotechnology using a very compact laser source. The goal of measurements, presented herein, is to show SXR images of various biological samples, proving high contrast in the "water window" and characterize in more detail such compact microscopy system, based on a laser plasma source with a double stream gas puff target and a Fresnel zone plate (FZP) objective. The influence of various acquisition parameters on the quality of the obtained SXR images, expressed in terms of a signal-to-noise (SNR) will be demonstrated. Moreover, because the measurements are performed on SXR images, similar measurements might be performed as a benchmark in order to characterize different imaging systems as well.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proc. SPIE 9510, EUV and X-ray Optics: Synergy between Laboratory and Space IV
ISBN
978-1-62841-631-2
ISSN
0277-786X
e-ISSN
1996-756X
Počet stran výsledku
11
Strana od-do
—
Název nakladatele
SPIE - The International Society for Optical Engineering
Místo vydání
Prague
Místo konání akce
Prague
Datum konání akce
13. 4. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000356859800019