Dosimetry of heavy ion exposure to human cells using nanoscopic imaging of double strand break repair protein clusters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F22%3A00554301" target="_blank" >RIV/61389005:_____/22:00554301 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1038/s41598-022-05413-6" target="_blank" >https://doi.org/10.1038/s41598-022-05413-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-022-05413-6" target="_blank" >10.1038/s41598-022-05413-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dosimetry of heavy ion exposure to human cells using nanoscopic imaging of double strand break repair protein clusters
Popis výsledku v původním jazyce
The human body is constantly exposed to ionizing radiation of different qualities. Especially the exposure to high-LET (linear energy transfer) particles increases due to new tumor therapy methods using e.g. carbon ions. Furthermore, upon radiation accidents, a mixture of radiation of different quality is adding up to human radiation exposure. Finally, long-term space missions such as the mission to mars pose great challenges to the dose assessment an astronaut was exposed to. Currently, DSB counting using gamma H2AX foci is used as an exact dosimetric measure for individuals. Due to the size of the gamma H2AX IRIF of similar to 0.6 mu m, it is only possible to count DSB when they are separated by this distance. For high-LET particle exposure, the distance of the DSB is too small to be separated and the dose will be underestimated. In this study, we developed a method where it is possible to count DSB which are separated by a distance of similar to 140 nm. We counted the number of ionizing radiation-induced pDNA-PKcs (DNA-PKcs phosphorylated at T2609) foci (size = 140 nm +/- 20 nm) in human HeLa cells using STED super-resolution microscopy that has an intrinsic resolution of 100 nm. Irradiation was performed at the ion microprobe SNAKE using high-LET 20 MeV lithium (LET= 116 keV/mu m) and 27 MeV carbon ions (LET= 500 keV/mu m). pDNA-PKcs foci label all DSB as proven by counterstaining with 53BP1 after low-LET gamma-irradiation where separation of individual DSB is in most cases larger than the 53BP1 gross size of about 0.6 mu m. Lithium ions produce (1.5 +/- 0.1) IRIF/mu m track length, for carbon ions (2.2 +/- 0.2) IRIF/mu m are counted. These values are enhanced by a factor of 2-3 compared to conventional foci counting of high-LET tracks. Comparison of the measurements to PARTRAC simulation data proof the consistency of results. We used these data to develop a measure for dosimetry of high-LET or mixed particle radiation exposure directly in the biological sample. We show that proper dosimetry for radiation up to a LET of 240 keV/mu m is possible.
Název v anglickém jazyce
Dosimetry of heavy ion exposure to human cells using nanoscopic imaging of double strand break repair protein clusters
Popis výsledku anglicky
The human body is constantly exposed to ionizing radiation of different qualities. Especially the exposure to high-LET (linear energy transfer) particles increases due to new tumor therapy methods using e.g. carbon ions. Furthermore, upon radiation accidents, a mixture of radiation of different quality is adding up to human radiation exposure. Finally, long-term space missions such as the mission to mars pose great challenges to the dose assessment an astronaut was exposed to. Currently, DSB counting using gamma H2AX foci is used as an exact dosimetric measure for individuals. Due to the size of the gamma H2AX IRIF of similar to 0.6 mu m, it is only possible to count DSB when they are separated by this distance. For high-LET particle exposure, the distance of the DSB is too small to be separated and the dose will be underestimated. In this study, we developed a method where it is possible to count DSB which are separated by a distance of similar to 140 nm. We counted the number of ionizing radiation-induced pDNA-PKcs (DNA-PKcs phosphorylated at T2609) foci (size = 140 nm +/- 20 nm) in human HeLa cells using STED super-resolution microscopy that has an intrinsic resolution of 100 nm. Irradiation was performed at the ion microprobe SNAKE using high-LET 20 MeV lithium (LET= 116 keV/mu m) and 27 MeV carbon ions (LET= 500 keV/mu m). pDNA-PKcs foci label all DSB as proven by counterstaining with 53BP1 after low-LET gamma-irradiation where separation of individual DSB is in most cases larger than the 53BP1 gross size of about 0.6 mu m. Lithium ions produce (1.5 +/- 0.1) IRIF/mu m track length, for carbon ions (2.2 +/- 0.2) IRIF/mu m are counted. These values are enhanced by a factor of 2-3 compared to conventional foci counting of high-LET tracks. Comparison of the measurements to PARTRAC simulation data proof the consistency of results. We used these data to develop a measure for dosimetry of high-LET or mixed particle radiation exposure directly in the biological sample. We show that proper dosimetry for radiation up to a LET of 240 keV/mu m is possible.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30224 - Radiology, nuclear medicine and medical imaging
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific Reports
ISSN
2045-2322
e-ISSN
2045-2322
Svazek periodika
12
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
15
Strana od-do
1305
Kód UT WoS článku
000747291900088
EID výsledku v databázi Scopus
2-s2.0-85123698558