Analytical solution of orthogonal similar oblate spheroidal coordinate system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F22%3A00563463" target="_blank" >RIV/61389005:_____/22:00563463 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10569-022-10099-z" target="_blank" >https://doi.org/10.1007/s10569-022-10099-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10569-022-10099-z" target="_blank" >10.1007/s10569-022-10099-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analytical solution of orthogonal similar oblate spheroidal coordinate system
Popis výsledku v původním jazyce
Satisfactory description of gravitational and gravity potential is needed for a proper modelling of a wide spectrum of physical problems on various size scales, ranging from atmosphere dynamics up to the movement of stars in a galaxy. The presented orthogonal similar oblate spheroidal (SOS) coordinate system can be a modelling tool applicable for a broad variety of objects exhibiting density, gravity or gravitation potential levels resembling similar oblate spheroids. This can be the case inside or in the vicinity of various oblate spheroidal objects (planets, stars, elliptical galaxies, disk galaxies) exhibiting broad range of oblateness. Although the solution of the relevant expressions for the SOS system cannot be written in a closed form, they are derived as analytical expressions-convergent infinite power series employing generalized binomial coefficients. Transformations of SOS coordinates to and from the Cartesian coordinates are shown. The corresponding partial derivatives are found in a suitable form, further enabling derivation of the metric scale factors necessary for differential operations. The terms containing derivatives of the metric scale factors in the velocity advection term of the momentum equation in the SOS coordinate system are expressed. The Jacobian determinant is derived as well.
Název v anglickém jazyce
Analytical solution of orthogonal similar oblate spheroidal coordinate system
Popis výsledku anglicky
Satisfactory description of gravitational and gravity potential is needed for a proper modelling of a wide spectrum of physical problems on various size scales, ranging from atmosphere dynamics up to the movement of stars in a galaxy. The presented orthogonal similar oblate spheroidal (SOS) coordinate system can be a modelling tool applicable for a broad variety of objects exhibiting density, gravity or gravitation potential levels resembling similar oblate spheroids. This can be the case inside or in the vicinity of various oblate spheroidal objects (planets, stars, elliptical galaxies, disk galaxies) exhibiting broad range of oblateness. Although the solution of the relevant expressions for the SOS system cannot be written in a closed form, they are derived as analytical expressions-convergent infinite power series employing generalized binomial coefficients. Transformations of SOS coordinates to and from the Cartesian coordinates are shown. The corresponding partial derivatives are found in a suitable form, further enabling derivation of the metric scale factors necessary for differential operations. The terms containing derivatives of the metric scale factors in the velocity advection term of the momentum equation in the SOS coordinate system are expressed. The Jacobian determinant is derived as well.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Celestial Mechanics and Dynamical Astronomy
ISSN
0923-2958
e-ISSN
1572-9478
Svazek periodika
134
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
39
Strana od-do
51
Kód UT WoS článku
000869844200002
EID výsledku v databázi Scopus
2-s2.0-85140229812