Self-adjointness of the 2D Dirac Operator with Singular Interactions Supported on Star Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F23%3A00558934" target="_blank" >RIV/61389005:_____/23:00558934 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00023-022-01213-w" target="_blank" >https://doi.org/10.1007/s00023-022-01213-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00023-022-01213-w" target="_blank" >10.1007/s00023-022-01213-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Self-adjointness of the 2D Dirac Operator with Singular Interactions Supported on Star Graphs
Popis výsledku v původním jazyce
We consider the two-dimensional Dirac operator with Lorentz-scalar delta-shell interactions on each edge of a star graph. An orthogonal decomposition is performed which shows such an operator is unitarily equivalent to an orthogonal sum of half-line Dirac operators with off-diagonal Coulomb potentials. This decomposition reduces the computation of the deficiency indices to determining the number of eigenvalues of a one-dimensional spin-orbit operator in the interval (-1/2,1/2). If the number of edges of the star graph is two or three, these deficiency indices can then be analytically determined for a range of parameters. For higher numbers of edges, it is possible to numerically calculate the deficiency indices. Among others, examples are given where the strength of the Lorentz-scalar interactions directly change the deficiency indices, while other parameters are all fixed and where the deficiency indices are (2,2), neither of which have been observed in the literature to the best knowledge of the authors. For those Dirac operators which are not already self-adjoint and do not have 0 in the spectrum of the associated spin-orbit operator, the distinguished self-adjoint extension is also characterized.
Název v anglickém jazyce
Self-adjointness of the 2D Dirac Operator with Singular Interactions Supported on Star Graphs
Popis výsledku anglicky
We consider the two-dimensional Dirac operator with Lorentz-scalar delta-shell interactions on each edge of a star graph. An orthogonal decomposition is performed which shows such an operator is unitarily equivalent to an orthogonal sum of half-line Dirac operators with off-diagonal Coulomb potentials. This decomposition reduces the computation of the deficiency indices to determining the number of eigenvalues of a one-dimensional spin-orbit operator in the interval (-1/2,1/2). If the number of edges of the star graph is two or three, these deficiency indices can then be analytically determined for a range of parameters. For higher numbers of edges, it is possible to numerically calculate the deficiency indices. Among others, examples are given where the strength of the Lorentz-scalar interactions directly change the deficiency indices, while other parameters are all fixed and where the deficiency indices are (2,2), neither of which have been observed in the literature to the best knowledge of the authors. For those Dirac operators which are not already self-adjoint and do not have 0 in the spectrum of the associated spin-orbit operator, the distinguished self-adjoint extension is also characterized.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-07129S" target="_blank" >GA21-07129S: Nové jevy pocházející z narušení invariance vůči časové inversi</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annales Henri Poincare
ISSN
1424-0637
e-ISSN
1424-0661
Svazek periodika
24
Číslo periodika v rámci svazku
JAN
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
43
Strana od-do
179-221
Kód UT WoS článku
000820575600002
EID výsledku v databázi Scopus
2-s2.0-85133494333