Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Quasi-Hermitian Formulation of Quantum Mechanics Using Two Conjugate Schrodinger Equations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F23%3A00574840" target="_blank" >RIV/61389005:_____/23:00574840 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/62690094:18470/23:50020908

  • Výsledek na webu

    <a href="https://doi.org/10.3390/axioms12070644" target="_blank" >https://doi.org/10.3390/axioms12070644</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/axioms12070644" target="_blank" >10.3390/axioms12070644</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Quasi-Hermitian Formulation of Quantum Mechanics Using Two Conjugate Schrodinger Equations

  • Popis výsledku v původním jazyce

    To the existing list of alternative formulations of quantum mechanics, a new version of the non-Hermitian interaction picture is added. What is new is that, in contrast to the more conventional non-Hermitian model-building recipes, the primary information about the observable phenomena is provided not only by the Hamiltonian but also by an additional operator with a real spectrum (say, R(t)) representing another observable. In the language of physics, the information carried by R(t) not equal R+(t) opens the possibility of reaching the exceptional-point degeneracy of the real eigenvalues, i.e., a specific quantum phase transition. In parallel, the unitarity of the system remains guaranteed, as usual, via a time-dependent inner-product metric Theta(t). From the point of view of mathematics, the control of evolution is provided by a pair of conjugate Schrodiner equations. This opens the possibility od an innovative dyadic representation of pure states, by which the direct use of Theta(t) is made redundant. The implementation of the formalism is illustrated via a schematic cosmological toy model in which the canonical quantization leads to the necessity of working with two conjugate Wheeler-DeWitt equations. From the point of view of physics, the 'kinematical input' operator R(t) may represent either the radius of a homogeneous and isotropic expanding empty Universe or, if you wish, its Hubble radius, or the scale factor a(t) emerging in the popular Lemaitre-Friedmann-Robertson-Walker classical solutions, with the exceptional-point singularity of the spectrum of R(t) mimicking the birth of the Universe ('Big Bang') at t = 0.

  • Název v anglickém jazyce

    Quasi-Hermitian Formulation of Quantum Mechanics Using Two Conjugate Schrodinger Equations

  • Popis výsledku anglicky

    To the existing list of alternative formulations of quantum mechanics, a new version of the non-Hermitian interaction picture is added. What is new is that, in contrast to the more conventional non-Hermitian model-building recipes, the primary information about the observable phenomena is provided not only by the Hamiltonian but also by an additional operator with a real spectrum (say, R(t)) representing another observable. In the language of physics, the information carried by R(t) not equal R+(t) opens the possibility of reaching the exceptional-point degeneracy of the real eigenvalues, i.e., a specific quantum phase transition. In parallel, the unitarity of the system remains guaranteed, as usual, via a time-dependent inner-product metric Theta(t). From the point of view of mathematics, the control of evolution is provided by a pair of conjugate Schrodiner equations. This opens the possibility od an innovative dyadic representation of pure states, by which the direct use of Theta(t) is made redundant. The implementation of the formalism is illustrated via a schematic cosmological toy model in which the canonical quantization leads to the necessity of working with two conjugate Wheeler-DeWitt equations. From the point of view of physics, the 'kinematical input' operator R(t) may represent either the radius of a homogeneous and isotropic expanding empty Universe or, if you wish, its Hubble radius, or the scale factor a(t) emerging in the popular Lemaitre-Friedmann-Robertson-Walker classical solutions, with the exceptional-point singularity of the spectrum of R(t) mimicking the birth of the Universe ('Big Bang') at t = 0.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    AXIOMS

  • ISSN

    2075-1680

  • e-ISSN

    2075-1680

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    19

  • Strana od-do

    644

  • Kód UT WoS článku

    001039141300001

  • EID výsledku v databázi Scopus

    2-s2.0-85166400217