Quasi-Hermitian Formulation of Quantum Mechanics Using Two Conjugate Schrodinger Equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F23%3A00574840" target="_blank" >RIV/61389005:_____/23:00574840 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/62690094:18470/23:50020908
Výsledek na webu
<a href="https://doi.org/10.3390/axioms12070644" target="_blank" >https://doi.org/10.3390/axioms12070644</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/axioms12070644" target="_blank" >10.3390/axioms12070644</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quasi-Hermitian Formulation of Quantum Mechanics Using Two Conjugate Schrodinger Equations
Popis výsledku v původním jazyce
To the existing list of alternative formulations of quantum mechanics, a new version of the non-Hermitian interaction picture is added. What is new is that, in contrast to the more conventional non-Hermitian model-building recipes, the primary information about the observable phenomena is provided not only by the Hamiltonian but also by an additional operator with a real spectrum (say, R(t)) representing another observable. In the language of physics, the information carried by R(t) not equal R+(t) opens the possibility of reaching the exceptional-point degeneracy of the real eigenvalues, i.e., a specific quantum phase transition. In parallel, the unitarity of the system remains guaranteed, as usual, via a time-dependent inner-product metric Theta(t). From the point of view of mathematics, the control of evolution is provided by a pair of conjugate Schrodiner equations. This opens the possibility od an innovative dyadic representation of pure states, by which the direct use of Theta(t) is made redundant. The implementation of the formalism is illustrated via a schematic cosmological toy model in which the canonical quantization leads to the necessity of working with two conjugate Wheeler-DeWitt equations. From the point of view of physics, the 'kinematical input' operator R(t) may represent either the radius of a homogeneous and isotropic expanding empty Universe or, if you wish, its Hubble radius, or the scale factor a(t) emerging in the popular Lemaitre-Friedmann-Robertson-Walker classical solutions, with the exceptional-point singularity of the spectrum of R(t) mimicking the birth of the Universe ('Big Bang') at t = 0.
Název v anglickém jazyce
Quasi-Hermitian Formulation of Quantum Mechanics Using Two Conjugate Schrodinger Equations
Popis výsledku anglicky
To the existing list of alternative formulations of quantum mechanics, a new version of the non-Hermitian interaction picture is added. What is new is that, in contrast to the more conventional non-Hermitian model-building recipes, the primary information about the observable phenomena is provided not only by the Hamiltonian but also by an additional operator with a real spectrum (say, R(t)) representing another observable. In the language of physics, the information carried by R(t) not equal R+(t) opens the possibility of reaching the exceptional-point degeneracy of the real eigenvalues, i.e., a specific quantum phase transition. In parallel, the unitarity of the system remains guaranteed, as usual, via a time-dependent inner-product metric Theta(t). From the point of view of mathematics, the control of evolution is provided by a pair of conjugate Schrodiner equations. This opens the possibility od an innovative dyadic representation of pure states, by which the direct use of Theta(t) is made redundant. The implementation of the formalism is illustrated via a schematic cosmological toy model in which the canonical quantization leads to the necessity of working with two conjugate Wheeler-DeWitt equations. From the point of view of physics, the 'kinematical input' operator R(t) may represent either the radius of a homogeneous and isotropic expanding empty Universe or, if you wish, its Hubble radius, or the scale factor a(t) emerging in the popular Lemaitre-Friedmann-Robertson-Walker classical solutions, with the exceptional-point singularity of the spectrum of R(t) mimicking the birth of the Universe ('Big Bang') at t = 0.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
AXIOMS
ISSN
2075-1680
e-ISSN
2075-1680
Svazek periodika
12
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
19
Strana od-do
644
Kód UT WoS článku
001039141300001
EID výsledku v databázi Scopus
2-s2.0-85166400217