Anisotropy and Asymptotic Degeneracy of the Physical-Hilbert-Space Inner-Product Metrics in an Exactly Solvable Unitary Quantum Model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F24%3A00584994" target="_blank" >RIV/61389005:_____/24:00584994 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/62690094:18470/24:50021473
Výsledek na webu
<a href="https://doi.org/10.3390/sym16030353" target="_blank" >https://doi.org/10.3390/sym16030353</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym16030353" target="_blank" >10.3390/sym16030353</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Anisotropy and Asymptotic Degeneracy of the Physical-Hilbert-Space Inner-Product Metrics in an Exactly Solvable Unitary Quantum Model
Popis výsledku v původním jazyce
A unitary-evolution process leading to an ultimate collapse and to a complete loss of observability alias quantum phase transition is studied. A specific solvable N-state model is considered, characterized by a non-stationary non-Hermitian Hamiltonian. Our analysis uses quantum mechanics formulated in Schrodinger picture in which, in principle, only the knowledge of a complete set of observables (i.e., operators Lambda j) enables one to guarantee the uniqueness of the related physical Hilbert space (i.e., of its inner-product metric Theta). Nevertheless, for the sake of simplicity, we only assume the knowledge of just a single input observable (viz., of the energy-representing Hamiltonian H equivalent to Lambda 1). Then, out of all of the eligible and Hamiltonian-dependent 'Hermitizing' inner-product metrics Theta=Theta(H), we pick up just the simplest possible candidate. Naturally, this slightly restricts the scope of the theory, but in our present model, such a restriction is more than compensated for by the possibility of an alternative, phenomenologically better motivated constraint by which the time-dependence of the metric is required to be smooth. This opens a new model-building freedom which, in fact, enables us to force the system to reach the collapse, i.e., a genuine quantum catastrophe as a result of the mere conventional, strictly unitary evolution.
Název v anglickém jazyce
Anisotropy and Asymptotic Degeneracy of the Physical-Hilbert-Space Inner-Product Metrics in an Exactly Solvable Unitary Quantum Model
Popis výsledku anglicky
A unitary-evolution process leading to an ultimate collapse and to a complete loss of observability alias quantum phase transition is studied. A specific solvable N-state model is considered, characterized by a non-stationary non-Hermitian Hamiltonian. Our analysis uses quantum mechanics formulated in Schrodinger picture in which, in principle, only the knowledge of a complete set of observables (i.e., operators Lambda j) enables one to guarantee the uniqueness of the related physical Hilbert space (i.e., of its inner-product metric Theta). Nevertheless, for the sake of simplicity, we only assume the knowledge of just a single input observable (viz., of the energy-representing Hamiltonian H equivalent to Lambda 1). Then, out of all of the eligible and Hamiltonian-dependent 'Hermitizing' inner-product metrics Theta=Theta(H), we pick up just the simplest possible candidate. Naturally, this slightly restricts the scope of the theory, but in our present model, such a restriction is more than compensated for by the possibility of an alternative, phenomenologically better motivated constraint by which the time-dependence of the metric is required to be smooth. This opens a new model-building freedom which, in fact, enables us to force the system to reach the collapse, i.e., a genuine quantum catastrophe as a result of the mere conventional, strictly unitary evolution.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Symmetry-Basel
ISSN
2073-8994
e-ISSN
2073-8994
Svazek periodika
16
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
22
Strana od-do
353
Kód UT WoS článku
001192513800001
EID výsledku v databázi Scopus
2-s2.0-85189026044