Solvable model of quantum phase transitions and the symbolic-manipulation-based study of its multiply degenerate exceptional points and of their unfolding
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F13%3A00395959" target="_blank" >RIV/61389005:_____/13:00395959 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.aop.2013.05.016" target="_blank" >http://dx.doi.org/10.1016/j.aop.2013.05.016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aop.2013.05.016" target="_blank" >10.1016/j.aop.2013.05.016</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Solvable model of quantum phase transitions and the symbolic-manipulation-based study of its multiply degenerate exceptional points and of their unfolding
Popis výsledku v původním jazyce
It is known that the practical use of non-Hermitian (i.e., typically, PT-symmetric) phenomenological quantum Hamiltonians H not equal HI requires an efficient reconstruction of an ad hoc Hilbert-space metric Theta = Theta(H) which would render the time-evolution unitary. Once one considers just the N-dimensional matrix toy models H = H-(N), the matrix elements of Theta(H) may be defined via a coupled set of N-2 polynomial equations. Their solution is a typical task for computer-assisted symbolic manipulations. The feasibility of such a model-completion construction is illustrated here via a discrete square well model H = p(2) + V endowed with a k-parametric close-to-the-boundary interaction V. The model is shown to possess (possibly, multiply degenerate) exceptional points marking the phase transitions which are attributable, due to the exact solvability of the model at any N < infinity, to the loss of the regularity of the metric. In the parameter-dependence of the energy spectrum nea
Název v anglickém jazyce
Solvable model of quantum phase transitions and the symbolic-manipulation-based study of its multiply degenerate exceptional points and of their unfolding
Popis výsledku anglicky
It is known that the practical use of non-Hermitian (i.e., typically, PT-symmetric) phenomenological quantum Hamiltonians H not equal HI requires an efficient reconstruction of an ad hoc Hilbert-space metric Theta = Theta(H) which would render the time-evolution unitary. Once one considers just the N-dimensional matrix toy models H = H-(N), the matrix elements of Theta(H) may be defined via a coupled set of N-2 polynomial equations. Their solution is a typical task for computer-assisted symbolic manipulations. The feasibility of such a model-completion construction is illustrated here via a discrete square well model H = p(2) + V endowed with a k-parametric close-to-the-boundary interaction V. The model is shown to possess (possibly, multiply degenerate) exceptional points marking the phase transitions which are attributable, due to the exact solvability of the model at any N < infinity, to the loss of the regularity of the metric. In the parameter-dependence of the energy spectrum nea
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BE - Teoretická fyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP203%2F11%2F1433" target="_blank" >GAP203/11/1433: Kryptohermitovské pojetí kvantové teorie a jejích aplikací</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Physics
ISSN
0003-4916
e-ISSN
—
Svazek periodika
336
Číslo periodika v rámci svazku
SEP
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
98-111
Kód UT WoS článku
000322847400006
EID výsledku v databázi Scopus
—