Spectral analysis of the Dirac operator with a singular interaction on a broken line
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F24%3A00598052" target="_blank" >RIV/61389005:_____/24:00598052 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1063/5.0202693" target="_blank" >https://doi.org/10.1063/5.0202693</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0202693" target="_blank" >10.1063/5.0202693</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spectral analysis of the Dirac operator with a singular interaction on a broken line
Popis výsledku v původním jazyce
We consider the one-parametric family of self-adjoint realizations of the two-dimensional massive Dirac operator with a Lorentz scalar delta-shell interaction of strength tau is an element of R{-2,0,2} supported on a broken line of opening angle 2 omega with omega is an element of(0,pi/2). The essential spectrum of any such self-adjoint realization is symmetric with respect to the origin with a gap around zero whose size depends on the mass and, for tau < 0, also on the strength of the interaction, but does not depend on omega. As the main result, we prove that for any N is an element of N and strength tau is an element of (-infinity, 0){-2} the discrete spectrum of any such self-adjoint realization has at least N discrete eigenvalues, with multiplicities taken into account, in the gap of the essential spectrum provided that omega is sufficiently small. Moreover, we obtain an explicit estimate on omega sufficient for this property to hold. For tau is an element of (0, infinity){2}, the discrete spectrum consists of at most one simple eigenvalue.
Název v anglickém jazyce
Spectral analysis of the Dirac operator with a singular interaction on a broken line
Popis výsledku anglicky
We consider the one-parametric family of self-adjoint realizations of the two-dimensional massive Dirac operator with a Lorentz scalar delta-shell interaction of strength tau is an element of R{-2,0,2} supported on a broken line of opening angle 2 omega with omega is an element of(0,pi/2). The essential spectrum of any such self-adjoint realization is symmetric with respect to the origin with a gap around zero whose size depends on the mass and, for tau < 0, also on the strength of the interaction, but does not depend on omega. As the main result, we prove that for any N is an element of N and strength tau is an element of (-infinity, 0){-2} the discrete spectrum of any such self-adjoint realization has at least N discrete eigenvalues, with multiplicities taken into account, in the gap of the essential spectrum provided that omega is sufficiently small. Moreover, we obtain an explicit estimate on omega sufficient for this property to hold. For tau is an element of (0, infinity){2}, the discrete spectrum consists of at most one simple eigenvalue.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-07129S" target="_blank" >GA21-07129S: Nové jevy pocházející z narušení invariance vůči časové inversi</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
1089-7658
Svazek periodika
65
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
083514
Kód UT WoS článku
001299474200001
EID výsledku v databázi Scopus
2-s2.0-85202850343