Effect of nanoparticle weight on the cellular uptake and drug delivery potential of PLGA nanoparticles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F23%3A00574203" target="_blank" >RIV/61389013:_____/23:00574203 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acsomega.3c02273" target="_blank" >https://pubs.acs.org/doi/10.1021/acsomega.3c02273</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsomega.3c02273" target="_blank" >10.1021/acsomega.3c02273</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effect of nanoparticle weight on the cellular uptake and drug delivery potential of PLGA nanoparticles
Popis výsledku v původním jazyce
Biodegradable and biocompatible polymeric nanoparticles (NPs) stand out as a key tool for improving drug bioavailability, reducing the inherent toxicity, and targeting the intended site. Most importantly, the ease of polymer synthesis and its derivatization to add functional properties makes them potentially ideal to fulfill the requirements for intended therapeutic applications. Among many polymers, US FDA-approved poly(l-lactic-co-glycolic) acid (PLGA) is a widely used biocompatible and biodegradable co-polymer in drug delivery and in implantable biomaterials. While many studies have been conducted using PLGA NPs as a drug delivery system, less attention has been given to understanding the effect of NP weight on cellular behaviors such as uptake. Here we discuss the synthesis of PLGA NPs with varying NP weights and their colloidal and biological properties. Following nanoprecipitation, we have synthesized PLGA NP sizes ranging from 60 to 100 nm by varying the initial PLGA feed in the system. These NPs were found to be stable for a prolonged period in colloidal conditions. We further studied cellular uptake and found that these NPs are cytocompatible. They are differentially uptaken by cancer and immune cells, which are greatly influenced by NPs’ weight. The drug delivery potential of these nanoparticles (NPs) was assessed using doxorubicin (DOX) as a model drug, loaded into the NP core at a concentration of 7.0 ± 0.5 wt % to study its therapeutic effects. The results showed that both concentration and treatment time are crucial factors for exhibiting therapeutic effects, as observed with DOX-NPs exhibiting a higher potency at lower concentrations. The observations revealed that DOX-NPs exhibited a higher cellular uptake of DOX compared to the free-DOX treatment group. This will allow us to reduce the recommended dose to achieve the desired effect, which otherwise required a large dose when treated with free DOX. Considering the significance of PLGA-based nanoparticle drug delivery systems, we anticipate that this study will contribute to the establishment of design considerations and guidelines for the therapeutic applications of nanoparticles.
Název v anglickém jazyce
Effect of nanoparticle weight on the cellular uptake and drug delivery potential of PLGA nanoparticles
Popis výsledku anglicky
Biodegradable and biocompatible polymeric nanoparticles (NPs) stand out as a key tool for improving drug bioavailability, reducing the inherent toxicity, and targeting the intended site. Most importantly, the ease of polymer synthesis and its derivatization to add functional properties makes them potentially ideal to fulfill the requirements for intended therapeutic applications. Among many polymers, US FDA-approved poly(l-lactic-co-glycolic) acid (PLGA) is a widely used biocompatible and biodegradable co-polymer in drug delivery and in implantable biomaterials. While many studies have been conducted using PLGA NPs as a drug delivery system, less attention has been given to understanding the effect of NP weight on cellular behaviors such as uptake. Here we discuss the synthesis of PLGA NPs with varying NP weights and their colloidal and biological properties. Following nanoprecipitation, we have synthesized PLGA NP sizes ranging from 60 to 100 nm by varying the initial PLGA feed in the system. These NPs were found to be stable for a prolonged period in colloidal conditions. We further studied cellular uptake and found that these NPs are cytocompatible. They are differentially uptaken by cancer and immune cells, which are greatly influenced by NPs’ weight. The drug delivery potential of these nanoparticles (NPs) was assessed using doxorubicin (DOX) as a model drug, loaded into the NP core at a concentration of 7.0 ± 0.5 wt % to study its therapeutic effects. The results showed that both concentration and treatment time are crucial factors for exhibiting therapeutic effects, as observed with DOX-NPs exhibiting a higher potency at lower concentrations. The observations revealed that DOX-NPs exhibited a higher cellular uptake of DOX compared to the free-DOX treatment group. This will allow us to reduce the recommended dose to achieve the desired effect, which otherwise required a large dose when treated with free DOX. Considering the significance of PLGA-based nanoparticle drug delivery systems, we anticipate that this study will contribute to the establishment of design considerations and guidelines for the therapeutic applications of nanoparticles.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Omega
ISSN
2470-1343
e-ISSN
2470-1343
Svazek periodika
8
Číslo periodika v rámci svazku
30
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
27146-27155
Kód UT WoS článku
001032137700001
EID výsledku v databázi Scopus
2-s2.0-85166759890