Hydrothermally grown molybdenum doped ZnO nanorod arrays. The concept of novel ultrafast nanoscintillator
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F23%3A00578746" target="_blank" >RIV/61389013:_____/23:00578746 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378271:_____/23:00578746 RIV/68407700:21230/23:00368571
Výsledek na webu
<a href="https://doi.org/10.1016/j.optmat.2023.114445" target="_blank" >https://doi.org/10.1016/j.optmat.2023.114445</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.optmat.2023.114445" target="_blank" >10.1016/j.optmat.2023.114445</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hydrothermally grown molybdenum doped ZnO nanorod arrays. The concept of novel ultrafast nanoscintillator
Popis výsledku v původním jazyce
Molybdenum doped ZnO was hydrothermally grown as the arrays of nanorods deposited onto the fused silica glass substrate. The molybdenum doping level varied from 1 to 30%. The tendency of Mo to create energy states within the bandgap of ZnO and theirinfluence on the energy levels of native defects as well as excitons were proven by the synergy ofexperiment and theory. The improvement of the timing characteristics of the exciton- and zincvacancy-related emission bands upon Mo doping (1-10%) was observed. This paves the way for the defect engineering strategy in the search of effective and ultrafast scintillator with the improved lightyield as well as compared to other materials. The new concept is based on the combination of theexciton and the defect emission. It is expected to have the potential of application in the detection ofgamma rays implemented in time-of-flight positron emission tomography (TOFPET).
Název v anglickém jazyce
Hydrothermally grown molybdenum doped ZnO nanorod arrays. The concept of novel ultrafast nanoscintillator
Popis výsledku anglicky
Molybdenum doped ZnO was hydrothermally grown as the arrays of nanorods deposited onto the fused silica glass substrate. The molybdenum doping level varied from 1 to 30%. The tendency of Mo to create energy states within the bandgap of ZnO and theirinfluence on the energy levels of native defects as well as excitons were proven by the synergy ofexperiment and theory. The improvement of the timing characteristics of the exciton- and zincvacancy-related emission bands upon Mo doping (1-10%) was observed. This paves the way for the defect engineering strategy in the search of effective and ultrafast scintillator with the improved lightyield as well as compared to other materials. The new concept is based on the combination of theexciton and the defect emission. It is expected to have the potential of application in the detection ofgamma rays implemented in time-of-flight positron emission tomography (TOFPET).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Optical Materials
ISSN
0925-3467
e-ISSN
1873-1252
Svazek periodika
145
Číslo periodika v rámci svazku
Nov.
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
114445
Kód UT WoS článku
001149623800001
EID výsledku v databázi Scopus
2-s2.0-85174195126