Advanced 3D printing of polyetherketoneketone hydroxyapatite composites via fused filament fabrication with increased interlayer connection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F24%3A00588303" target="_blank" >RIV/61389013:_____/24:00588303 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1996-1944/17/13/3161" target="_blank" >https://www.mdpi.com/1996-1944/17/13/3161</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ma17133161" target="_blank" >10.3390/ma17133161</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Advanced 3D printing of polyetherketoneketone hydroxyapatite composites via fused filament fabrication with increased interlayer connection
Popis výsledku v původním jazyce
Additively manufactured implants, surgical guides, and medical devices that would have direct contact with the human body require predictable behaviour when stress is applied during their standard operation. Products built with Fused Filament Fabrication (FFF) possess orthotropic characteristics, thus, it is necessary to determine the properties that can be achieved in the XY- and Z-directions of printing. A concentration of 10 wt% of hydroxyapatite (HA) in polyetherketoneketone (PEKK) matrix was selected as the most promising biomaterial supporting cell attachment for medical applications and was characterized with an Ultimate Tensile Strength (UTS) of 78.3 MPa and 43.9 MPa in the XY- and Z-directions of 3D printing, respectively. The effect of the filler on the crystallization kinetics, which is a key parameter for the selection of semicrystalline materials suitable for 3D printing, was explained. This work clearly shows that only in situ crystallization provides the ability to build parts with a more thermodynamically stable primary form of crystallites.
Název v anglickém jazyce
Advanced 3D printing of polyetherketoneketone hydroxyapatite composites via fused filament fabrication with increased interlayer connection
Popis výsledku anglicky
Additively manufactured implants, surgical guides, and medical devices that would have direct contact with the human body require predictable behaviour when stress is applied during their standard operation. Products built with Fused Filament Fabrication (FFF) possess orthotropic characteristics, thus, it is necessary to determine the properties that can be achieved in the XY- and Z-directions of printing. A concentration of 10 wt% of hydroxyapatite (HA) in polyetherketoneketone (PEKK) matrix was selected as the most promising biomaterial supporting cell attachment for medical applications and was characterized with an Ultimate Tensile Strength (UTS) of 78.3 MPa and 43.9 MPa in the XY- and Z-directions of 3D printing, respectively. The effect of the filler on the crystallization kinetics, which is a key parameter for the selection of semicrystalline materials suitable for 3D printing, was explained. This work clearly shows that only in situ crystallization provides the ability to build parts with a more thermodynamically stable primary form of crystallites.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials
ISSN
1996-1944
e-ISSN
1996-1944
Svazek periodika
17
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
3161
Kód UT WoS článku
001269225800001
EID výsledku v databázi Scopus
2-s2.0-85198376927