pH-induced morphological reversible transition from microparticles to vesicles for effective bacteria entrapment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F24%3A00600337" target="_blank" >RIV/61389013:_____/24:00600337 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60162694:G44__/25:00564001 RIV/00179906:_____/24:10488264
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0014305724007729?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0014305724007729?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eurpolymj.2024.113511" target="_blank" >10.1016/j.eurpolymj.2024.113511</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
pH-induced morphological reversible transition from microparticles to vesicles for effective bacteria entrapment
Popis výsledku v původním jazyce
Polymer particles with stimuli-responsive properties offer promising applications in healthcare, chemical reactors, development of artificial cells and organelles, as well as in the entrapment of bacteria. In this study, a novel biocompatible, biodegradable, and pH-responsive diblock copolymer based on polylactide (PLA) and poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) was synthesized via a metal-free one-pot/simultaneous ring-opening polymerization (ROP) and reversible addition-fragmentation chain transfer (RAFT) approach (ROP/RAFT). This copolymer was then employed to produce highly monodisperse microparticles using microfluidics droplet generation technique. Utilizing confocal microscopy imaging, a reversible pH-induced morphological transition from microparticles to vesicle-like structures was observed at pH 5.1. The reversible shift in morphology from microparticles to giant vesicles (Vs) in acidic environments is triggered by the protonation of amino groups of the PDPA block, rendering vesicle surfaces positively charged − an advantageous feature for attracting and engulfing negatively charged bacteria. Initial validation involved electrostatic interactions with negatively charged latex resin beads followed by assessing interaction capabilities with gram-negative bacteria, Escherichia coli (E. coli). Additionally, the reversible morphological transition of microparticles-to-vesicles was employed to study drug release at different pHs. This approach proven to be a promising strategy for targeted drug delivery and bacteria entrapment using smart pH-responsive microparticles.
Název v anglickém jazyce
pH-induced morphological reversible transition from microparticles to vesicles for effective bacteria entrapment
Popis výsledku anglicky
Polymer particles with stimuli-responsive properties offer promising applications in healthcare, chemical reactors, development of artificial cells and organelles, as well as in the entrapment of bacteria. In this study, a novel biocompatible, biodegradable, and pH-responsive diblock copolymer based on polylactide (PLA) and poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) was synthesized via a metal-free one-pot/simultaneous ring-opening polymerization (ROP) and reversible addition-fragmentation chain transfer (RAFT) approach (ROP/RAFT). This copolymer was then employed to produce highly monodisperse microparticles using microfluidics droplet generation technique. Utilizing confocal microscopy imaging, a reversible pH-induced morphological transition from microparticles to vesicle-like structures was observed at pH 5.1. The reversible shift in morphology from microparticles to giant vesicles (Vs) in acidic environments is triggered by the protonation of amino groups of the PDPA block, rendering vesicle surfaces positively charged − an advantageous feature for attracting and engulfing negatively charged bacteria. Initial validation involved electrostatic interactions with negatively charged latex resin beads followed by assessing interaction capabilities with gram-negative bacteria, Escherichia coli (E. coli). Additionally, the reversible morphological transition of microparticles-to-vesicles was employed to study drug release at different pHs. This approach proven to be a promising strategy for targeted drug delivery and bacteria entrapment using smart pH-responsive microparticles.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Polymer Journal
ISSN
0014-3057
e-ISSN
1873-1945
Svazek periodika
221
Číslo periodika v rámci svazku
11 December
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
113511
Kód UT WoS článku
001349898800001
EID výsledku v databázi Scopus
2-s2.0-85207953784