Histopathological biomarkers for predicting the tumour accumulation of nanomedicines
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F24%3A00601920" target="_blank" >RIV/61389013:_____/24:00601920 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.nature.com/articles/s41551-024-01197-4" target="_blank" >https://www.nature.com/articles/s41551-024-01197-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41551-024-01197-4" target="_blank" >10.1038/s41551-024-01197-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Histopathological biomarkers for predicting the tumour accumulation of nanomedicines
Popis výsledku v původním jazyce
The clinical prospects of cancer nanomedicines depend on effective patient stratification. Here we report the identification of predictive biomarkers of the accumulation of nanomedicines in tumour tissue. By using supervised machine learning on data of the accumulation of nanomedicines in tumour models in mice, we identified the densities of blood vessels and of tumour-associated macrophages as key predictive features. On the basis of these two features, we derived a biomarker score correlating with the concentration of liposomal doxorubicin in tumours and validated it in three syngeneic tumour models in immunocompetent mice and in four cell-line-derived and six patient-derived tumour xenografts in mice. The score effectively discriminated tumours according to the accumulation of nanomedicines (high versus low), with an area under the receiver operating characteristic curve of 0.91. Histopathological assessment of 30 tumour specimens from patients and of 28 corresponding primary tumour biopsies confirmed the score’s effectiveness in predicting the tumour accumulation of liposomal doxorubicin. Biomarkers of the tumour accumulation of nanomedicines may aid the stratification of patients in clinical trials of cancer nanomedicines.
Název v anglickém jazyce
Histopathological biomarkers for predicting the tumour accumulation of nanomedicines
Popis výsledku anglicky
The clinical prospects of cancer nanomedicines depend on effective patient stratification. Here we report the identification of predictive biomarkers of the accumulation of nanomedicines in tumour tissue. By using supervised machine learning on data of the accumulation of nanomedicines in tumour models in mice, we identified the densities of blood vessels and of tumour-associated macrophages as key predictive features. On the basis of these two features, we derived a biomarker score correlating with the concentration of liposomal doxorubicin in tumours and validated it in three syngeneic tumour models in immunocompetent mice and in four cell-line-derived and six patient-derived tumour xenografts in mice. The score effectively discriminated tumours according to the accumulation of nanomedicines (high versus low), with an area under the receiver operating characteristic curve of 0.91. Histopathological assessment of 30 tumour specimens from patients and of 28 corresponding primary tumour biopsies confirmed the score’s effectiveness in predicting the tumour accumulation of liposomal doxorubicin. Biomarkers of the tumour accumulation of nanomedicines may aid the stratification of patients in clinical trials of cancer nanomedicines.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nature Biomedical Engineering
ISSN
2157-846X
e-ISSN
2157-846X
Svazek periodika
8
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
13
Strana od-do
1366-1378
Kód UT WoS článku
001198545500001
EID výsledku v databázi Scopus
2-s2.0-85189884966