Optical injection into the laser wakefield accelerator by co-propagating weaker pulse.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F17%3A00476744" target="_blank" >RIV/61389021:_____/17:00476744 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optical injection into the laser wakefield accelerator by co-propagating weaker pulse.
Popis výsledku v původním jazyce
The considerable progress in the investigation of electron acceleration in laser plasmas was achieved within the last several decades. The main advantage of this concept in comparison with standard radiofrequency accelerators is in the plasma ability to sustain large accelerating gradients in order of hundreds of GV/m [1]. Currently, the most promising approach to the electron acceleration in underdense laser plasma is cavitated wakefield regime, when electrons are accelerated by the nonlinear plasma wave dragged by the ultrashort (tens of fs), ultraintense (I > 1019 W/cm2) laser pulse propagating through the gaseous target. However, the most simple and spontaneous mechanism to inject the electrons into the acceleration phase called self-injection has significant drawback, it is very difficult to control parameters of produced electron bunches due to its unstable, nonlinear nature. Therefore, various alternative mechanisms such as an injection by a density ramp, ionisation injection using a mixture of lighter and heavier gases or optical injection employing additional laser pulse(s) were proposed.
Název v anglickém jazyce
Optical injection into the laser wakefield accelerator by co-propagating weaker pulse.
Popis výsledku anglicky
The considerable progress in the investigation of electron acceleration in laser plasmas was achieved within the last several decades. The main advantage of this concept in comparison with standard radiofrequency accelerators is in the plasma ability to sustain large accelerating gradients in order of hundreds of GV/m [1]. Currently, the most promising approach to the electron acceleration in underdense laser plasma is cavitated wakefield regime, when electrons are accelerated by the nonlinear plasma wave dragged by the ultrashort (tens of fs), ultraintense (I > 1019 W/cm2) laser pulse propagating through the gaseous target. However, the most simple and spontaneous mechanism to inject the electrons into the acceleration phase called self-injection has significant drawback, it is very difficult to control parameters of produced electron bunches due to its unstable, nonlinear nature. Therefore, various alternative mechanisms such as an injection by a density ramp, ionisation injection using a mixture of lighter and heavier gases or optical injection employing additional laser pulse(s) were proposed.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2015083" target="_blank" >LM2015083: Prague Asterix Laser System</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
EPS 2017: 44th European Physical Society Conference on Plasma Physics
ISBN
979-10-96389-07
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
—
Název nakladatele
European Physical Society
Místo vydání
Mulhouse
Místo konání akce
Belfast
Datum konání akce
26. 6. 2017
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—