Electron acceleration in perpendicularly crossed laser beams with following injection in the laser wakefield accelerator
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F16%3A00463035" target="_blank" >RIV/68378271:_____/16:00463035 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61389021:_____/16:00463035
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Electron acceleration in perpendicularly crossed laser beams with following injection in the laser wakefield accelerator
Popis výsledku v původním jazyce
Electrons are accelerated by the plasma wave dragged by a short, intense laser pulse propagatingnin plasma [1]. The advantage of plasmas is in their ability to sustain an accelerating gradient much larger than in a conventional radiofrequency accelerator. Currently, the most efficient mechanism to accelerate electrons in a plasma by a laser pulse isnthe cavitated wakefield regime (bubble regime), i.e. electron acceleration in an ion cavity propagatingnbehind the laser pulse in plasmas. Electrons can be trapped at the back of the ion cavity (the bubble)nand they form a bunch which is accelerated by the high electric field of the plasma wave (the space-charge force). The electron bunch can be either formed from plasma by the self-injection, or by other mechanisms, e.g. by optical injection [1, 2, 3] during a collision with another additional (injection) laser pulse. In this proceeding, electron acceleration in a main laser beam (MB) colliding in plasma with an additional laser beam (ALB) which propagates perpendicularly to the MB [2] is explored by numerical modelling
Název v anglickém jazyce
Electron acceleration in perpendicularly crossed laser beams with following injection in the laser wakefield accelerator
Popis výsledku anglicky
Electrons are accelerated by the plasma wave dragged by a short, intense laser pulse propagatingnin plasma [1]. The advantage of plasmas is in their ability to sustain an accelerating gradient much larger than in a conventional radiofrequency accelerator. Currently, the most efficient mechanism to accelerate electrons in a plasma by a laser pulse isnthe cavitated wakefield regime (bubble regime), i.e. electron acceleration in an ion cavity propagatingnbehind the laser pulse in plasmas. Electrons can be trapped at the back of the ion cavity (the bubble)nand they form a bunch which is accelerated by the high electric field of the plasma wave (the space-charge force). The electron bunch can be either formed from plasma by the self-injection, or by other mechanisms, e.g. by optical injection [1, 2, 3] during a collision with another additional (injection) laser pulse. In this proceeding, electron acceleration in a main laser beam (MB) colliding in plasma with an additional laser beam (ALB) which propagates perpendicularly to the MB [2] is explored by numerical modelling
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BH - Optika, masery a lasery
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-03118S" target="_blank" >GA15-03118S: Laditelný zdroj vysokoenergetického zaření z plazmového urychlovače pro rentgenové zobrazování s fázovým kontrastem</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
EPS 2016: 43rd European Physical Society Conference on Plasma Physics
ISBN
2-914771-99-1
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
—
Název nakladatele
European Physical Society
Místo vydání
Mulhouse
Místo konání akce
Leuven
Datum konání akce
4. 7. 2016
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—