Robust sparse linear regression for tokamak plasma boundary estimation using variational Bayes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F18%3A00491728" target="_blank" >RIV/61389021:_____/18:00491728 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985556:_____/18:00491728 RIV/68407700:21230/18:00324830 RIV/68407700:21340/18:00324830
Výsledek na webu
<a href="http://dx.doi.org/10.1088/1742-6596/1047/1/012015" target="_blank" >http://dx.doi.org/10.1088/1742-6596/1047/1/012015</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1742-6596/1047/1/012015" target="_blank" >10.1088/1742-6596/1047/1/012015</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust sparse linear regression for tokamak plasma boundary estimation using variational Bayes
Popis výsledku v původním jazyce
Precise control of the shape of plasma in a tokamak requires reliable reconstruction of the plasma boundary. The problem of boundary estimation can be reduced to a simple linear regression with a potentially infinite amount of regressors. This regression problem poses some difficulties for classical methods. The selection of regressors significantly influences the reconstructed boundary. Also, the underlying model may not be valid during certain phases of the plasma discharge. Formal model structure estimation technique based on the automatic relevance principle yields a version of sparse least squares estimator. In this contribution, we extend the previous method by relaxing the assumption of Gaussian noise and using Student’s t-distribution instead. Such a model is less sensitive to potential outliers in the measurement. We show on simulations and real data that the proposed modification improves estimation of the plasma boundary in some stages of a plasma discharge. Performance of the resulting algorithm is evaluated with respect to a more detailed and computationally costly model which is considered to be the „ground truth“. The results are also compared to those of Lasso and Tikhonov regularization techniques.
Název v anglickém jazyce
Robust sparse linear regression for tokamak plasma boundary estimation using variational Bayes
Popis výsledku anglicky
Precise control of the shape of plasma in a tokamak requires reliable reconstruction of the plasma boundary. The problem of boundary estimation can be reduced to a simple linear regression with a potentially infinite amount of regressors. This regression problem poses some difficulties for classical methods. The selection of regressors significantly influences the reconstructed boundary. Also, the underlying model may not be valid during certain phases of the plasma discharge. Formal model structure estimation technique based on the automatic relevance principle yields a version of sparse least squares estimator. In this contribution, we extend the previous method by relaxing the assumption of Gaussian noise and using Student’s t-distribution instead. Such a model is less sensitive to potential outliers in the measurement. We show on simulations and real data that the proposed modification improves estimation of the plasma boundary in some stages of a plasma discharge. Performance of the resulting algorithm is evaluated with respect to a more detailed and computationally costly model which is considered to be the „ground truth“. The results are also compared to those of Lasso and Tikhonov regularization techniques.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Journal of Physics: Conference Series
ISBN
—
ISSN
1742-6596
e-ISSN
—
Počet stran výsledku
12
Strana od-do
—
Název nakladatele
IOP Publishing Ltd
Místo vydání
Bristol
Místo konání akce
Waterloo
Datum konání akce
23. 5. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—