EIV regression with bounded errors in data: total 'least squares' with Chebyshev norm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10419032" target="_blank" >RIV/00216208:11320/20:10419032 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61384399:31140/20:00054768
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gs5zqeEpuC" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gs5zqeEpuC</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00362-017-0939-z" target="_blank" >10.1007/s00362-017-0939-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
EIV regression with bounded errors in data: total 'least squares' with Chebyshev norm
Popis výsledku v původním jazyce
We consider the linear regression model with stochastic regressors and stochastic errors both in regressors and the dependent variable ("structural EIV model"), where the regressors and errors are assumed to satisfy some interesting and general conditions, different from traditional assumptions on EIV models (such as Deming regression). The most interesting fact is that we need neither independence of errors, nor identical distributions, nor zero means. The first main result is that the TLS estimator, where the traditional Frobenius norm is replaced by the Chebyshev norm, yields a consistent estimator of regression parameters under the assumptions summarized below. The second main result is that we design an algorithm for computation of the estimator, reducing the computation to a family of generalized linear-fractional programming problems (which are easily computable by interior point methods). The conditions under which our estimator works are (said roughly): it is known which regressors are affected by random errors and which are observed exactly; that the regressors satisfy a certain asymptotic regularity condition; all error distributions, both in regressors and in the endogenous variable, are bounded in absolute value by a common bound (but the bound is unknown and is estimated); there is a high probability that we observe a family of data points where the errors are close to the bound. We also generalize the method to the case that the bounds of errors in the dependent variable and regressors are not the same, but their ratios are known or estimable. The assumptions, under which our estimator works, cover many settings where the traditional TLS is inconsistent.
Název v anglickém jazyce
EIV regression with bounded errors in data: total 'least squares' with Chebyshev norm
Popis výsledku anglicky
We consider the linear regression model with stochastic regressors and stochastic errors both in regressors and the dependent variable ("structural EIV model"), where the regressors and errors are assumed to satisfy some interesting and general conditions, different from traditional assumptions on EIV models (such as Deming regression). The most interesting fact is that we need neither independence of errors, nor identical distributions, nor zero means. The first main result is that the TLS estimator, where the traditional Frobenius norm is replaced by the Chebyshev norm, yields a consistent estimator of regression parameters under the assumptions summarized below. The second main result is that we design an algorithm for computation of the estimator, reducing the computation to a family of generalized linear-fractional programming problems (which are easily computable by interior point methods). The conditions under which our estimator works are (said roughly): it is known which regressors are affected by random errors and which are observed exactly; that the regressors satisfy a certain asymptotic regularity condition; all error distributions, both in regressors and in the endogenous variable, are bounded in absolute value by a common bound (but the bound is unknown and is estimated); there is a high probability that we observe a family of data points where the errors are close to the bound. We also generalize the method to the case that the bounds of errors in the dependent variable and regressors are not the same, but their ratios are known or estimable. The assumptions, under which our estimator works, cover many settings where the traditional TLS is inconsistent.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Statistical Papers
ISSN
0932-5026
e-ISSN
—
Svazek periodika
61
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
23
Strana od-do
279-301
Kód UT WoS článku
000521495900015
EID výsledku v databázi Scopus
2-s2.0-85026556619