Investigation of the initial phases of nanosecond discharges in liquid water
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F20%3A00531307" target="_blank" >RIV/61389021:_____/20:00531307 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/20:00114468
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1361-6595/ab87b7" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6595/ab87b7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-6595/ab87b7" target="_blank" >10.1088/1361-6595/ab87b7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Investigation of the initial phases of nanosecond discharges in liquid water
Popis výsledku v původním jazyce
In this work, we examine initial phases of micro-discharges produced in deionised water by high-voltage (HV) pulses of nanosecond duration. We apply opto-electrical diagnostics with extremely high temporal (down to 30 ps) as well as spatial (down to 1 μm) resolution. Frozen interferometric and shadowgraph images show three distinct events. The first, the subcritical (no-discharge) event, is characterised by periodic perturbations of the index of refraction which depart from the anode surface and are pulled away at the speed of sound as an expanding envelope defined by the shape of the anode tip. One-dimensional hydrodynamic modelling of the subcritical phase under conditions mimicking curvatures of real anode tips reveals basic characteristics of perturbations caused by dynamic balance between the hydrostatic and electrostrictive pressures consistent with experimental observations. The second, the dark or non-luminous discharge event, is characterised by the onset of a few isolated very tiny tree-like structures growing from the anode tip. Depending on the HV amplitude, the initial structures occur with a delay of ∼2-3 ns after onset of the HV pulse and subsequently expand with average velocity of ∼1 ± 105-2 ± 105 m s-1, creating very dense bush-like structures made of thin hair-like filaments in a few nanoseconds. The third, the luminous discharge event, follows (nearly simultaneously) the dark discharge event and unveils much simpler tree-like morphology determined by the extension of non-luminous bush-like structures. Characteristic dimensions of observed events range from about 1 μm (typical diameter of non-luminous filaments) to tens of micrometres (characteristic diameters of luminous filaments). Furthermore, we address a possible role of microbubbles developing in the anode region due to the periodic HV pulses and verify that the UV-vis-NIR spectrometric signatures of the luminous phase notably change when replacing non-degassed deionised water with degassed.
Název v anglickém jazyce
Investigation of the initial phases of nanosecond discharges in liquid water
Popis výsledku anglicky
In this work, we examine initial phases of micro-discharges produced in deionised water by high-voltage (HV) pulses of nanosecond duration. We apply opto-electrical diagnostics with extremely high temporal (down to 30 ps) as well as spatial (down to 1 μm) resolution. Frozen interferometric and shadowgraph images show three distinct events. The first, the subcritical (no-discharge) event, is characterised by periodic perturbations of the index of refraction which depart from the anode surface and are pulled away at the speed of sound as an expanding envelope defined by the shape of the anode tip. One-dimensional hydrodynamic modelling of the subcritical phase under conditions mimicking curvatures of real anode tips reveals basic characteristics of perturbations caused by dynamic balance between the hydrostatic and electrostrictive pressures consistent with experimental observations. The second, the dark or non-luminous discharge event, is characterised by the onset of a few isolated very tiny tree-like structures growing from the anode tip. Depending on the HV amplitude, the initial structures occur with a delay of ∼2-3 ns after onset of the HV pulse and subsequently expand with average velocity of ∼1 ± 105-2 ± 105 m s-1, creating very dense bush-like structures made of thin hair-like filaments in a few nanoseconds. The third, the luminous discharge event, follows (nearly simultaneously) the dark discharge event and unveils much simpler tree-like morphology determined by the extension of non-luminous bush-like structures. Characteristic dimensions of observed events range from about 1 μm (typical diameter of non-luminous filaments) to tens of micrometres (characteristic diameters of luminous filaments). Furthermore, we address a possible role of microbubbles developing in the anode region due to the periodic HV pulses and verify that the UV-vis-NIR spectrometric signatures of the luminous phase notably change when replacing non-degassed deionised water with degassed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-04676S" target="_blank" >GA18-04676S: Základní mechanismy nanosekundového výboje v kapalné vodě</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Plasma Sources Science & Technology
ISSN
0963-0252
e-ISSN
—
Svazek periodika
29
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
17
Strana od-do
064001
Kód UT WoS článku
000575399800001
EID výsledku v databázi Scopus
2-s2.0-85087106326