Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Disentangling dark and luminous phases of nanosecond discharges developing in liquid water

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F20%3A00538538" target="_blank" >RIV/61389021:_____/20:00538538 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://iopscience.iop.org/article/10.1088/1361-6595/abac49" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6595/abac49</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6595/abac49" target="_blank" >10.1088/1361-6595/abac49</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Disentangling dark and luminous phases of nanosecond discharges developing in liquid water

  • Popis výsledku v původním jazyce

    There is no clear experimental evidence of the underlying microscopic physical mechanisms of micro-discharges directly produced in liquids. In this study, we examine shadowgraph images and plasma-induced emission (PIE) to decouple simultaneously developing dark and luminous phases of micro-discharges with nanosecond durations in liquid water. We apply diagnostics with extremely high temporal (down to 30 ps) and spatial (down to 1 μm) resolutions to capture tiny bush-like dark filaments that expand from the anode tip together with the formation of luminous tree-like structures. For the first time, we disentangle two closely coupled dark and luminous phases of the discharge events and determine their onsets accurately with respect to the driving high-voltage (HV) pulse. The dark filaments start appearing within ∼3-4 ns after the onset of the HV pulse, and subsequently expand at a constant velocity of ∼1 × 105-2 × 105 m s-1, depending on the HV amplitude and anode curvature. A systematic analysis of the PIE waveforms using the associated shadowgraph images reveals that the onset of the luminous discharge phase is delayed by ∼600-800 ps with respect to the onset of the initial dark filament structures. Considering the constant propagation velocity of dark filaments, the luminous phase starts to develop when the extension of regions with a perturbed refractive index (i.e., perturbed density) reaches several tens of micrometres. An analysis of PIE tracks within the captured shadowgraph images confirms that luminous filaments develop only in regions affected by primary dark filaments and their attachment to the anode surface coincides with points of initial onset of the first dark filaments. Furthermore, the emission intensity produced during the luminous phase originates from the luminous filaments developing in the bulk liquid. Our study provides an important insight into the dynamics of different phases of micro-discharges in de-ionised water.

  • Název v anglickém jazyce

    Disentangling dark and luminous phases of nanosecond discharges developing in liquid water

  • Popis výsledku anglicky

    There is no clear experimental evidence of the underlying microscopic physical mechanisms of micro-discharges directly produced in liquids. In this study, we examine shadowgraph images and plasma-induced emission (PIE) to decouple simultaneously developing dark and luminous phases of micro-discharges with nanosecond durations in liquid water. We apply diagnostics with extremely high temporal (down to 30 ps) and spatial (down to 1 μm) resolutions to capture tiny bush-like dark filaments that expand from the anode tip together with the formation of luminous tree-like structures. For the first time, we disentangle two closely coupled dark and luminous phases of the discharge events and determine their onsets accurately with respect to the driving high-voltage (HV) pulse. The dark filaments start appearing within ∼3-4 ns after the onset of the HV pulse, and subsequently expand at a constant velocity of ∼1 × 105-2 × 105 m s-1, depending on the HV amplitude and anode curvature. A systematic analysis of the PIE waveforms using the associated shadowgraph images reveals that the onset of the luminous discharge phase is delayed by ∼600-800 ps with respect to the onset of the initial dark filament structures. Considering the constant propagation velocity of dark filaments, the luminous phase starts to develop when the extension of regions with a perturbed refractive index (i.e., perturbed density) reaches several tens of micrometres. An analysis of PIE tracks within the captured shadowgraph images confirms that luminous filaments develop only in regions affected by primary dark filaments and their attachment to the anode surface coincides with points of initial onset of the first dark filaments. Furthermore, the emission intensity produced during the luminous phase originates from the luminous filaments developing in the bulk liquid. Our study provides an important insight into the dynamics of different phases of micro-discharges in de-ionised water.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10305 - Fluids and plasma physics (including surface physics)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-04676S" target="_blank" >GA18-04676S: Základní mechanismy nanosekundového výboje v kapalné vodě</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Plasma Sources Science & Technology

  • ISSN

    0963-0252

  • e-ISSN

  • Svazek periodika

    29

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

    095001

  • Kód UT WoS článku

    000569732000001

  • EID výsledku v databázi Scopus

    2-s2.0-85091654678