Thermal barrier coatings with novel architectures for diesel engine applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F20%3A00540267" target="_blank" >RIV/61389021:_____/20:00540267 - isvavai.cz</a>
Výsledek na webu
<a href="https://reader.elsevier.com/reader/sd/pii/S0257897220306198?token=7F625F0E59472EC0B86FE0BA8812042AECBC45C7AE47508840B965EB4FF29CFBEF6B7CF3D178289B48D4C5BED22509AE" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S0257897220306198?token=7F625F0E59472EC0B86FE0BA8812042AECBC45C7AE47508840B965EB4FF29CFBEF6B7CF3D178289B48D4C5BED22509AE</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.surfcoat.2020.125950" target="_blank" >10.1016/j.surfcoat.2020.125950</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Thermal barrier coatings with novel architectures for diesel engine applications
Popis výsledku v původním jazyce
The increased demands for higher efficiency and environmentally friendly diesel engines have led to a continuous search for new coating processing routes and new ceramic materials that can provide the required properties when applied on engine components such as pistons and exhaust manifolds. Although successful in gas turbine applications, thermal barrier coatings (TBCs) produced by suspension plasma spraying (SPS) processes have not been employed so far in the automotive industry. This work aims to achieve a better understanding of the role of thermal conductivity and thermal effusivity on the durability of SPS TBCs applied to pistons of diesel engines. Three different coating architectures were considered for this study. The first architecture was yttria-stabilized zirconia (YSZ) lamellar top coat deposited by APS (Atmospheric Plasma Spray) and used as a reference sample in this study. The second architecture was a columnar SPS top coat of either YSZ or gadolinium zirconate (GZO) while the third architecture was an SPS columnar top coat, “sealed” with a dense sealing layer deposited on the top coat. Two types of sealing layers were used, a metallic (M) or a ceramic thermal spray layer (C). Laser Flash Analysis (LFA) was used to determine the thermal conductivity and thermal effusivity of the coatings. Two different thermal cyclic tests were used to test the TBCs behavior under cyclic thermal loads. Microstructure analysis before and after the thermal cyclic tests were performed using SEM in different microstructures and materials. The thermal cyclic test results were correlated with coatings microstructure and thermophysical properties. It was observed that the columnar coatings produced by SPS had an enhanced service life in the thermal cyclic tests as compared to the APS coatings.
Název v anglickém jazyce
Thermal barrier coatings with novel architectures for diesel engine applications
Popis výsledku anglicky
The increased demands for higher efficiency and environmentally friendly diesel engines have led to a continuous search for new coating processing routes and new ceramic materials that can provide the required properties when applied on engine components such as pistons and exhaust manifolds. Although successful in gas turbine applications, thermal barrier coatings (TBCs) produced by suspension plasma spraying (SPS) processes have not been employed so far in the automotive industry. This work aims to achieve a better understanding of the role of thermal conductivity and thermal effusivity on the durability of SPS TBCs applied to pistons of diesel engines. Three different coating architectures were considered for this study. The first architecture was yttria-stabilized zirconia (YSZ) lamellar top coat deposited by APS (Atmospheric Plasma Spray) and used as a reference sample in this study. The second architecture was a columnar SPS top coat of either YSZ or gadolinium zirconate (GZO) while the third architecture was an SPS columnar top coat, “sealed” with a dense sealing layer deposited on the top coat. Two types of sealing layers were used, a metallic (M) or a ceramic thermal spray layer (C). Laser Flash Analysis (LFA) was used to determine the thermal conductivity and thermal effusivity of the coatings. Two different thermal cyclic tests were used to test the TBCs behavior under cyclic thermal loads. Microstructure analysis before and after the thermal cyclic tests were performed using SEM in different microstructures and materials. The thermal cyclic test results were correlated with coatings microstructure and thermophysical properties. It was observed that the columnar coatings produced by SPS had an enhanced service life in the thermal cyclic tests as compared to the APS coatings.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Surface and Coatings Technology
ISSN
0257-8972
e-ISSN
—
Svazek periodika
396
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
15
Strana od-do
125950
Kód UT WoS článku
000540175000022
EID výsledku v databázi Scopus
2-s2.0-85085597713