Nonthermal phase transitions in irradiated oxides
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F20%3A00541080" target="_blank" >RIV/61389021:_____/20:00541080 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378271:_____/20:00533694
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1361-648X/aba389/meta" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-648X/aba389/meta</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-648X/aba389" target="_blank" >10.1088/1361-648X/aba389</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nonthermal phase transitions in irradiated oxides
Popis výsledku v původním jazyce
It is predicted theoretically that various oxides (Al2O3, MgO, SiO2 and TiO2) under ultrafast excitation of the electronic system exhibit nonthermal phase transitions. In the bulk, Al2O3 transiently forms a superionic phase via nonthermal phase transition, MgO and SiO2 disorder, TiO2 experiences solid-solid phase transition while thermal effects lead to melting. In the finite-size samples and near-surface regions, MgO undergoes solid-solid phase transition at lower doses than those required for atomic disorder. All studied oxides but TiO2, if allowed to expand, exhibit a lower damage threshold, whereas in TiO2 expansion releases the stress and prevents solid-solid phase transition thereby increasing the damage threshold up to the melting one. The results suggest that a nonthermal phase transition is a general response of oxides to sufficiently high ultrafast electronic excitation. A comparison with nonadiabatic simulations demonstrates that Born-Oppenheimer approximation systematically overestimates damage thresholds, and in some cases misses a phase transition entirely.
Název v anglickém jazyce
Nonthermal phase transitions in irradiated oxides
Popis výsledku anglicky
It is predicted theoretically that various oxides (Al2O3, MgO, SiO2 and TiO2) under ultrafast excitation of the electronic system exhibit nonthermal phase transitions. In the bulk, Al2O3 transiently forms a superionic phase via nonthermal phase transition, MgO and SiO2 disorder, TiO2 experiences solid-solid phase transition while thermal effects lead to melting. In the finite-size samples and near-surface regions, MgO undergoes solid-solid phase transition at lower doses than those required for atomic disorder. All studied oxides but TiO2, if allowed to expand, exhibit a lower damage threshold, whereas in TiO2 expansion releases the stress and prevents solid-solid phase transition thereby increasing the damage threshold up to the melting one. The results suggest that a nonthermal phase transition is a general response of oxides to sufficiently high ultrafast electronic excitation. A comparison with nonadiabatic simulations demonstrates that Born-Oppenheimer approximation systematically overestimates damage thresholds, and in some cases misses a phase transition entirely.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physics-Condensed Matter
ISSN
0953-8984
e-ISSN
—
Svazek periodika
32
Číslo periodika v rámci svazku
43
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
1-8
Kód UT WoS článku
000560665600001
EID výsledku v databázi Scopus
2-s2.0-85089844736