Test bench for calibration of magnetic field sensor prototypes for COMPASS-U tokamak
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F21%3A00543176" target="_blank" >RIV/61389021:_____/21:00543176 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/21:10439758 RIV/49777513:23220/21:43961939
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S092037962100243X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S092037962100243X?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fusengdes.2021.112467" target="_blank" >10.1016/j.fusengdes.2021.112467</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Test bench for calibration of magnetic field sensor prototypes for COMPASS-U tokamak
Popis výsledku v původním jazyce
Magnetic field sensors are fundamental for control and physics exploitation of fusion devices. Their inductive nature implies high dynamic ranges and a broad bandwidth, thus a precise characterization and calibration of these probes is paramount. COMPASS-U will have a completely new set of magnetic diagnostics, from sensors to data acquisition. Sensors installed in-vessel will operate at 300–500 °C and should survive transients of even higher temperatures and thus materials used should be high-temperature compatible. These design limitations will have an impact on the dynamic range and bandwidth of the sensors, which needs to be reliably quantified, optimally with the same test bench for all sensor types. The first part of this work presents a test bench and the process of how to calibrate the effective area using a large solenoidal coil and frequency response of the magnetic sensor prototypes with a Helmholtz coil. In the second part, test results of the sensor prototypes are presented and discussed in detail. The low-bandwidth sensors made of mineral insulated cable (MIC), intended for plasma control and machine protection, show negligible attenuation up to 10 kHz, sufficient for their role. For fast coils consisting of bare wire wound on ceramic mandrel and Thick Printed Copper (TPC) sensors the negligible attenuation measured below 1 MHz is again sufficient for their intended purpose of detecting fast coherent plasma fluctuations. Resonances introduced by the capacitance of long cables from the vacuum vessel feedthroughs to the data acquisition systems are measured, to model their influence on the signal.
Název v anglickém jazyce
Test bench for calibration of magnetic field sensor prototypes for COMPASS-U tokamak
Popis výsledku anglicky
Magnetic field sensors are fundamental for control and physics exploitation of fusion devices. Their inductive nature implies high dynamic ranges and a broad bandwidth, thus a precise characterization and calibration of these probes is paramount. COMPASS-U will have a completely new set of magnetic diagnostics, from sensors to data acquisition. Sensors installed in-vessel will operate at 300–500 °C and should survive transients of even higher temperatures and thus materials used should be high-temperature compatible. These design limitations will have an impact on the dynamic range and bandwidth of the sensors, which needs to be reliably quantified, optimally with the same test bench for all sensor types. The first part of this work presents a test bench and the process of how to calibrate the effective area using a large solenoidal coil and frequency response of the magnetic sensor prototypes with a Helmholtz coil. In the second part, test results of the sensor prototypes are presented and discussed in detail. The low-bandwidth sensors made of mineral insulated cable (MIC), intended for plasma control and machine protection, show negligible attenuation up to 10 kHz, sufficient for their role. For fast coils consisting of bare wire wound on ceramic mandrel and Thick Printed Copper (TPC) sensors the negligible attenuation measured below 1 MHz is again sufficient for their intended purpose of detecting fast coherent plasma fluctuations. Resonances introduced by the capacitance of long cables from the vacuum vessel feedthroughs to the data acquisition systems are measured, to model their influence on the signal.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Fusion Engineering and Design
ISSN
0920-3796
e-ISSN
1873-7196
Svazek periodika
168
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
5
Strana od-do
112467
Kód UT WoS článku
000670076200004
EID výsledku v databázi Scopus
2-s2.0-85102246506