Semi-supervised deep networks for plasma state identification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F22%3A00564063" target="_blank" >RIV/61389021:_____/22:00564063 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/22:00362328 RIV/68407700:21340/22:00362328
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1361-6587/ac9926" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6587/ac9926</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-6587/ac9926" target="_blank" >10.1088/1361-6587/ac9926</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semi-supervised deep networks for plasma state identification
Popis výsledku v původním jazyce
Correct and timely detection of plasma confinement regimes and edge localized modes (ELMs) is important for improving the operation of tokamaks. Existing machine learning approaches detect these regimes as a form of post-processing of experimental data. Moreover, they are typically trained on a large dataset of tens of labeled discharges, which may be costly to build. We investigate the ability of current machine learning approaches to detect the confinement regime and ELMs with the smallest possible delay after the latest measurement. We also demonstrate that including unlabeled data into the training process can improve the results in a situation where only a limited set of reliable labels is available. All training and validation is performed on data from the COMPASS tokamak. The InceptionTime architecture trained using a semi-supervised approach was found to be the most accurate method based on the set of tested variants. It is able to achieve good overall accuracy of the regime classification at the time instant of 100 mu s delayed behind the latest data record. We also evaluate the capability of the model to correctly predict class transitions. While ELM occurrence can be detected with a tolerance smaller than 50 mu s, detection of the confinement regime transition is more demanding and it was successful with 2 ms tolerance. Sensitivity studies to different values of model parameters are provided. We believe that the achieved accuracy is acceptable in practice and the method could be used in real-time operation.
Název v anglickém jazyce
Semi-supervised deep networks for plasma state identification
Popis výsledku anglicky
Correct and timely detection of plasma confinement regimes and edge localized modes (ELMs) is important for improving the operation of tokamaks. Existing machine learning approaches detect these regimes as a form of post-processing of experimental data. Moreover, they are typically trained on a large dataset of tens of labeled discharges, which may be costly to build. We investigate the ability of current machine learning approaches to detect the confinement regime and ELMs with the smallest possible delay after the latest measurement. We also demonstrate that including unlabeled data into the training process can improve the results in a situation where only a limited set of reliable labels is available. All training and validation is performed on data from the COMPASS tokamak. The InceptionTime architecture trained using a semi-supervised approach was found to be the most accurate method based on the set of tested variants. It is able to achieve good overall accuracy of the regime classification at the time instant of 100 mu s delayed behind the latest data record. We also evaluate the capability of the model to correctly predict class transitions. While ELM occurrence can be detected with a tolerance smaller than 50 mu s, detection of the confinement regime transition is more demanding and it was successful with 2 ms tolerance. Sensitivity studies to different values of model parameters are provided. We believe that the achieved accuracy is acceptable in practice and the method could be used in real-time operation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Plasma Physics and Controlled Fusion
ISSN
0741-3335
e-ISSN
1361-6587
Svazek periodika
64
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
16
Strana od-do
125004
Kód UT WoS článku
000876069600001
EID výsledku v databázi Scopus
2-s2.0-85141293718