Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Semi-supervised deep networks for plasma state identification

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F22%3A00564063" target="_blank" >RIV/61389021:_____/22:00564063 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21230/22:00362328 RIV/68407700:21340/22:00362328

  • Výsledek na webu

    <a href="https://iopscience.iop.org/article/10.1088/1361-6587/ac9926" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6587/ac9926</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6587/ac9926" target="_blank" >10.1088/1361-6587/ac9926</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Semi-supervised deep networks for plasma state identification

  • Popis výsledku v původním jazyce

    Correct and timely detection of plasma confinement regimes and edge localized modes (ELMs) is important for improving the operation of tokamaks. Existing machine learning approaches detect these regimes as a form of post-processing of experimental data. Moreover, they are typically trained on a large dataset of tens of labeled discharges, which may be costly to build. We investigate the ability of current machine learning approaches to detect the confinement regime and ELMs with the smallest possible delay after the latest measurement. We also demonstrate that including unlabeled data into the training process can improve the results in a situation where only a limited set of reliable labels is available. All training and validation is performed on data from the COMPASS tokamak. The InceptionTime architecture trained using a semi-supervised approach was found to be the most accurate method based on the set of tested variants. It is able to achieve good overall accuracy of the regime classification at the time instant of 100 mu s delayed behind the latest data record. We also evaluate the capability of the model to correctly predict class transitions. While ELM occurrence can be detected with a tolerance smaller than 50 mu s, detection of the confinement regime transition is more demanding and it was successful with 2 ms tolerance. Sensitivity studies to different values of model parameters are provided. We believe that the achieved accuracy is acceptable in practice and the method could be used in real-time operation.

  • Název v anglickém jazyce

    Semi-supervised deep networks for plasma state identification

  • Popis výsledku anglicky

    Correct and timely detection of plasma confinement regimes and edge localized modes (ELMs) is important for improving the operation of tokamaks. Existing machine learning approaches detect these regimes as a form of post-processing of experimental data. Moreover, they are typically trained on a large dataset of tens of labeled discharges, which may be costly to build. We investigate the ability of current machine learning approaches to detect the confinement regime and ELMs with the smallest possible delay after the latest measurement. We also demonstrate that including unlabeled data into the training process can improve the results in a situation where only a limited set of reliable labels is available. All training and validation is performed on data from the COMPASS tokamak. The InceptionTime architecture trained using a semi-supervised approach was found to be the most accurate method based on the set of tested variants. It is able to achieve good overall accuracy of the regime classification at the time instant of 100 mu s delayed behind the latest data record. We also evaluate the capability of the model to correctly predict class transitions. While ELM occurrence can be detected with a tolerance smaller than 50 mu s, detection of the confinement regime transition is more demanding and it was successful with 2 ms tolerance. Sensitivity studies to different values of model parameters are provided. We believe that the achieved accuracy is acceptable in practice and the method could be used in real-time operation.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10305 - Fluids and plasma physics (including surface physics)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Plasma Physics and Controlled Fusion

  • ISSN

    0741-3335

  • e-ISSN

    1361-6587

  • Svazek periodika

    64

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    16

  • Strana od-do

    125004

  • Kód UT WoS článku

    000876069600001

  • EID výsledku v databázi Scopus

    2-s2.0-85141293718