Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Application of machine learning for detecting and tracking turbulent structures in plasma fusion devices using ultra fast imaging

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F24%3A00616628" target="_blank" >RIV/61389021:_____/24:00616628 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.nature.com/articles/s41598-024-79251-z" target="_blank" >https://www.nature.com/articles/s41598-024-79251-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-024-79251-z" target="_blank" >10.1038/s41598-024-79251-z</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Application of machine learning for detecting and tracking turbulent structures in plasma fusion devices using ultra fast imaging

  • Popis výsledku v původním jazyce

    This study explores the application of machine learning techniques for detecting and tracking plasma filaments around the boundary of magnetically confined tokamak plasmas. Plasma filaments, also called blobs, are responsible for enhanced turbulent transport across magnetic field lines, and their accurate characterization is crucial for optimizing the performance of magnetic fusion devices. We present a novel approach that combines machine learning methods applied to data obtained from ultra-fast cameras, including YOLO (You Only Look Once) for object detection, semantic segmentation, and specific tracking methods. This approach enables fast and accurate detection and tracking of filaments while overcoming the limitations of conventional methods, which are time-consuming and prone to human subjectivity. A significant advance in our study lies in the development of a method for automatically labeling a large batch of data, which greatly facilitates the training of supervised machine learning algorithms. Using these techniques, we obtained promising results demonstrating a significant improvement over conventional tracking methods, achieving a detection accuracy of up to 98.8%, while reducing the inference time per frame by 15% to 31% compared to conventional Kalman filter tracking. These results open up new perspectives for investigating turbulent phenomena in tokamaks, and could have important implications for the development of controlled nuclear fusion.

  • Název v anglickém jazyce

    Application of machine learning for detecting and tracking turbulent structures in plasma fusion devices using ultra fast imaging

  • Popis výsledku anglicky

    This study explores the application of machine learning techniques for detecting and tracking plasma filaments around the boundary of magnetically confined tokamak plasmas. Plasma filaments, also called blobs, are responsible for enhanced turbulent transport across magnetic field lines, and their accurate characterization is crucial for optimizing the performance of magnetic fusion devices. We present a novel approach that combines machine learning methods applied to data obtained from ultra-fast cameras, including YOLO (You Only Look Once) for object detection, semantic segmentation, and specific tracking methods. This approach enables fast and accurate detection and tracking of filaments while overcoming the limitations of conventional methods, which are time-consuming and prone to human subjectivity. A significant advance in our study lies in the development of a method for automatically labeling a large batch of data, which greatly facilitates the training of supervised machine learning algorithms. Using these techniques, we obtained promising results demonstrating a significant improvement over conventional tracking methods, achieving a detection accuracy of up to 98.8%, while reducing the inference time per frame by 15% to 31% compared to conventional Kalman filter tracking. These results open up new perspectives for investigating turbulent phenomena in tokamaks, and could have important implications for the development of controlled nuclear fusion.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10305 - Fluids and plasma physics (including surface physics)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

    2045-2322

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    16

  • Strana od-do

    27965

  • Kód UT WoS článku

    001355873800036

  • EID výsledku v databázi Scopus

    2-s2.0-85209119161