Metallic water: Transient state under ultrafast electronic excitation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F23%3A00583130" target="_blank" >RIV/61389021:_____/23:00583130 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378271:_____/23:00570876
Výsledek na webu
<a href="https://pubs.aip.org/aip/jcp/article/158/7/074501/2877031/Metallic-water-Transient-state-under-ultrafast" target="_blank" >https://pubs.aip.org/aip/jcp/article/158/7/074501/2877031/Metallic-water-Transient-state-under-ultrafast</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0139802" target="_blank" >10.1063/5.0139802</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Metallic water: Transient state under ultrafast electronic excitation
Popis výsledku v původním jazyce
The modern means of controlled irradiation by femtosecond lasers or swift heavy ion beams can transiently produce such energy densities in samples that reach collective electronic excitation levels of the warm dense matter state, where the potential energy of interaction of the particles is comparable to their kinetic energies (temperatures of a few eV). Such massive electronic excitation severely alters the interatomic potentials, producing unusual nonequilibrium states of matter and different chemistry. We employ density functional theory and tight binding molecular dynamics formalisms to study the response of bulk water to ultrafast excitation of its electrons. After a certain threshold electronic temperature, the water becomes electronically conducting via the collapse of its bandgap. At high doses, it is accompanied by nonthermal acceleration of ions to a temperature of a few thousand Kelvins within sub-100 fs timescales. We identify the interplay of this nonthermal mechanism with the electron-ion coupling, enhancing the electron-to-ions energy transfer. Various chemically active fragments are formed from the disintegrating water molecules, depending on the deposited dose.
Název v anglickém jazyce
Metallic water: Transient state under ultrafast electronic excitation
Popis výsledku anglicky
The modern means of controlled irradiation by femtosecond lasers or swift heavy ion beams can transiently produce such energy densities in samples that reach collective electronic excitation levels of the warm dense matter state, where the potential energy of interaction of the particles is comparable to their kinetic energies (temperatures of a few eV). Such massive electronic excitation severely alters the interatomic potentials, producing unusual nonequilibrium states of matter and different chemistry. We employ density functional theory and tight binding molecular dynamics formalisms to study the response of bulk water to ultrafast excitation of its electrons. After a certain threshold electronic temperature, the water becomes electronically conducting via the collapse of its bandgap. At high doses, it is accompanied by nonthermal acceleration of ions to a temperature of a few thousand Kelvins within sub-100 fs timescales. We identify the interplay of this nonthermal mechanism with the electron-ion coupling, enhancing the electron-to-ions energy transfer. Various chemically active fragments are formed from the disintegrating water molecules, depending on the deposited dose.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018114" target="_blank" >LM2018114: Prague Asterix Laser System</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Physics
ISSN
0021-9606
e-ISSN
1089-7690
Svazek periodika
158
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
074501
Kód UT WoS článku
000933631400007
EID výsledku v databázi Scopus
2-s2.0-85148548569