Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Metallic water: Transient state under ultrafast electronic excitation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F23%3A00583130" target="_blank" >RIV/61389021:_____/23:00583130 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68378271:_____/23:00570876

  • Výsledek na webu

    <a href="https://pubs.aip.org/aip/jcp/article/158/7/074501/2877031/Metallic-water-Transient-state-under-ultrafast" target="_blank" >https://pubs.aip.org/aip/jcp/article/158/7/074501/2877031/Metallic-water-Transient-state-under-ultrafast</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0139802" target="_blank" >10.1063/5.0139802</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Metallic water: Transient state under ultrafast electronic excitation

  • Popis výsledku v původním jazyce

    The modern means of controlled irradiation by femtosecond lasers or swift heavy ion beams can transiently produce such energy densities in samples that reach collective electronic excitation levels of the warm dense matter state, where the potential energy of interaction of the particles is comparable to their kinetic energies (temperatures of a few eV). Such massive electronic excitation severely alters the interatomic potentials, producing unusual nonequilibrium states of matter and different chemistry. We employ density functional theory and tight binding molecular dynamics formalisms to study the response of bulk water to ultrafast excitation of its electrons. After a certain threshold electronic temperature, the water becomes electronically conducting via the collapse of its bandgap. At high doses, it is accompanied by nonthermal acceleration of ions to a temperature of a few thousand Kelvins within sub-100 fs timescales. We identify the interplay of this nonthermal mechanism with the electron-ion coupling, enhancing the electron-to-ions energy transfer. Various chemically active fragments are formed from the disintegrating water molecules, depending on the deposited dose.

  • Název v anglickém jazyce

    Metallic water: Transient state under ultrafast electronic excitation

  • Popis výsledku anglicky

    The modern means of controlled irradiation by femtosecond lasers or swift heavy ion beams can transiently produce such energy densities in samples that reach collective electronic excitation levels of the warm dense matter state, where the potential energy of interaction of the particles is comparable to their kinetic energies (temperatures of a few eV). Such massive electronic excitation severely alters the interatomic potentials, producing unusual nonequilibrium states of matter and different chemistry. We employ density functional theory and tight binding molecular dynamics formalisms to study the response of bulk water to ultrafast excitation of its electrons. After a certain threshold electronic temperature, the water becomes electronically conducting via the collapse of its bandgap. At high doses, it is accompanied by nonthermal acceleration of ions to a temperature of a few thousand Kelvins within sub-100 fs timescales. We identify the interplay of this nonthermal mechanism with the electron-ion coupling, enhancing the electron-to-ions energy transfer. Various chemically active fragments are formed from the disintegrating water molecules, depending on the deposited dose.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LM2018114" target="_blank" >LM2018114: Prague Asterix Laser System</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Chemical Physics

  • ISSN

    0021-9606

  • e-ISSN

    1089-7690

  • Svazek periodika

    158

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    074501

  • Kód UT WoS článku

    000933631400007

  • EID výsledku v databázi Scopus

    2-s2.0-85148548569