Experimental and numerical investigations with multifunctional heat transfer fluid to evaluate the performance of a thermal energy storage system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F24%3A00604677" target="_blank" >RIV/61389021:_____/24:00604677 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22320/24:43930320
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2451904924003354?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2451904924003354?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tsep.2024.102717" target="_blank" >10.1016/j.tsep.2024.102717</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Experimental and numerical investigations with multifunctional heat transfer fluid to evaluate the performance of a thermal energy storage system
Popis výsledku v původním jazyce
In the upcoming decades, concentrated solar power (CSP) technology is expected to be one of the most promising methods of producing electricity. Along with the reduction in energy waste coupled with an increase in efficiency, the thermal energy storage (TES) systems are vital in refining the dependability and efficacy of the energy infrastructure and in reducing gap between supply and demand. This study aims to evaluate a parabolic trough collector by means of experimental investigation and mathematical modelling. Nanofluid is employed as an energy absorption material and transport medium from concentrating tube to storage tank. At consistent flow rate of 3.0 L per minute, a comparative evaluation is conducted between water and ZnS/ water-quantum dots at different volume concentrations (0.1, 0.2, 0.3, and 0.4 %). Heat exchanger-delivered sensible heat, thermal efficiency, heat removal factor, and energetic efficiency are used to examine the qualitative and quantitative performance of the system. The ZnS/ water-quantum dots ratio of 0.3 % (wt%) has been found to yield the maximum thermal and energetic efficiencies. At a solar intensity of 1210 W/m2, the highest thermal efficiency of 57.81 % is reflected by the experimental observations. At the same intensity, there is a 20.63 % increase in the energy efficiency. The charge and discharge of phase-changing material (PCM) are highly influenced by the flow rate of heat transfer fluid (HTF). By increasing the HTF flow rate from 1 to 3 L per minute, the solidification and melting times are shortened by 30 % and 10 %, respectively. This study emphatically reflects a high potential of employing nanofluid in TES to enhance the performance of energy infrastructure coupled with energy waste reduction.
Název v anglickém jazyce
Experimental and numerical investigations with multifunctional heat transfer fluid to evaluate the performance of a thermal energy storage system
Popis výsledku anglicky
In the upcoming decades, concentrated solar power (CSP) technology is expected to be one of the most promising methods of producing electricity. Along with the reduction in energy waste coupled with an increase in efficiency, the thermal energy storage (TES) systems are vital in refining the dependability and efficacy of the energy infrastructure and in reducing gap between supply and demand. This study aims to evaluate a parabolic trough collector by means of experimental investigation and mathematical modelling. Nanofluid is employed as an energy absorption material and transport medium from concentrating tube to storage tank. At consistent flow rate of 3.0 L per minute, a comparative evaluation is conducted between water and ZnS/ water-quantum dots at different volume concentrations (0.1, 0.2, 0.3, and 0.4 %). Heat exchanger-delivered sensible heat, thermal efficiency, heat removal factor, and energetic efficiency are used to examine the qualitative and quantitative performance of the system. The ZnS/ water-quantum dots ratio of 0.3 % (wt%) has been found to yield the maximum thermal and energetic efficiencies. At a solar intensity of 1210 W/m2, the highest thermal efficiency of 57.81 % is reflected by the experimental observations. At the same intensity, there is a 20.63 % increase in the energy efficiency. The charge and discharge of phase-changing material (PCM) are highly influenced by the flow rate of heat transfer fluid (HTF). By increasing the HTF flow rate from 1 to 3 L per minute, the solidification and melting times are shortened by 30 % and 10 %, respectively. This study emphatically reflects a high potential of employing nanofluid in TES to enhance the performance of energy infrastructure coupled with energy waste reduction.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Thermal Science and Engineering Progress
ISSN
2451-9049
e-ISSN
2451-9049
Svazek periodika
53
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
102717
Kód UT WoS článku
001262577700001
EID výsledku v databázi Scopus
2-s2.0-85197080715