Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Insight into the Investigation of Diamond Nanoparticles Suspended Therminol(R)55 Nanofluids on Concentrated Photovoltaic/Thermal Solar Collector

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00359311" target="_blank" >RIV/68407700:21220/22:00359311 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.3390/nano12172975" target="_blank" >https://doi.org/10.3390/nano12172975</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/nano12172975" target="_blank" >10.3390/nano12172975</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Insight into the Investigation of Diamond Nanoparticles Suspended Therminol(R)55 Nanofluids on Concentrated Photovoltaic/Thermal Solar Collector

  • Popis výsledku v původním jazyce

    Nanofluids are identified as advanced working fluids in the solar energy conversion field with superior heat transfer characteristics. This research work introduces carbon-based diamond nanomaterial and Therminol®55 oil-based nanofluids for implementation in a concentrated photovoltaic/thermal (CPV/T) solar collector. This study focuses on the experimental formulation, characterization of properties, and performance evaluation of the nanofluid-based CPV/T system. Thermo-physical (thermal conductivity, viscosity, and rheology), optical (UV-vis and FT-IR), and stability (Zeta potential) properties of the formulated nanofluids are characterized at 0.001–0.1 wt.% concentrations of dispersed particles using experimental assessment. The maximum photo-thermal energy conversion efficiency of the base fluid is improved by 120.80% at 0.1 wt.%. The thermal conductivity of pure oil is increased by adding the nanomaterial. The highest enhancement of 73.39% is observed for the TH-55/DP nanofluid. Furthermore, dynamic viscosity decreased dramatically across the temperature range studied (20–100 °C), and the nanofluid exhibited dominant Newtonian flow behavior, with viscosity remaining nearly constant up to a shear rate of 100 s-1. Numerical simulations of the nanofluid-operated CPV/T collector have disclosed substantial improvements. At a concentrated solar irradiance of 5000 W/m2 and an optimal flow rate of 3 L/min, the highest thermal and electrical energy conversion efficiency enhancements are found to be 11 and 1.8%, respectively.

  • Název v anglickém jazyce

    Insight into the Investigation of Diamond Nanoparticles Suspended Therminol(R)55 Nanofluids on Concentrated Photovoltaic/Thermal Solar Collector

  • Popis výsledku anglicky

    Nanofluids are identified as advanced working fluids in the solar energy conversion field with superior heat transfer characteristics. This research work introduces carbon-based diamond nanomaterial and Therminol®55 oil-based nanofluids for implementation in a concentrated photovoltaic/thermal (CPV/T) solar collector. This study focuses on the experimental formulation, characterization of properties, and performance evaluation of the nanofluid-based CPV/T system. Thermo-physical (thermal conductivity, viscosity, and rheology), optical (UV-vis and FT-IR), and stability (Zeta potential) properties of the formulated nanofluids are characterized at 0.001–0.1 wt.% concentrations of dispersed particles using experimental assessment. The maximum photo-thermal energy conversion efficiency of the base fluid is improved by 120.80% at 0.1 wt.%. The thermal conductivity of pure oil is increased by adding the nanomaterial. The highest enhancement of 73.39% is observed for the TH-55/DP nanofluid. Furthermore, dynamic viscosity decreased dramatically across the temperature range studied (20–100 °C), and the nanofluid exhibited dominant Newtonian flow behavior, with viscosity remaining nearly constant up to a shear rate of 100 s-1. Numerical simulations of the nanofluid-operated CPV/T collector have disclosed substantial improvements. At a concentrated solar irradiance of 5000 W/m2 and an optimal flow rate of 3 L/min, the highest thermal and electrical energy conversion efficiency enhancements are found to be 11 and 1.8%, respectively.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20303 - Thermodynamics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Nanomaterials

  • ISSN

    2079-4991

  • e-ISSN

    2079-4991

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    17

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    23

  • Strana od-do

  • Kód UT WoS článku

    000851951600001

  • EID výsledku v databázi Scopus

    2-s2.0-85137833569