Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

MXene incorporated nanofluids for energy conversion performance augmentation of a concentrated photovoltaic/ thermal solar collector

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00359726" target="_blank" >RIV/68407700:21220/22:00359726 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1002/er.8737" target="_blank" >https://doi.org/10.1002/er.8737</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/er.8737" target="_blank" >10.1002/er.8737</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    MXene incorporated nanofluids for energy conversion performance augmentation of a concentrated photovoltaic/ thermal solar collector

  • Popis výsledku v původním jazyce

    This research work introduces emerging two-dimensional (2D) MXene (Ti3C2) and Therminol55 oil-based mono and hybrid nanofluids for concentrated photovoltaic/thermal (CPV/T) solar systems. This study focuses on the experimental formulation, characterization of properties, and performance evaluation of the nanofluid-based CPV/T system. Thermo-physical (conductivity, viscosity, and rheology), optical (UV-vis and FT-IR), and stability (Zeta potential and TGA) properties of the formulated nanofluids are characterized at 0.025 wt.% to 0.125 wt.% concentrations of dispersed particles using experimental analysis. By suspending the nanomaterials, photo-thermal energy conversion is improved considerably, up to 85.98%. The thermal conductivity of pure oil is increased by adding Ti3C2 and CuO nanomaterials. The highest enhancements of up to 84.55% and 80.03% are observed for the TH-55/Ti3C2 and TH-55/ Ti3C2 + CuO nanofluids, respectively. Furthermore, dynamic viscosity decreased dramatically over the temperature range investigated (25C-105C), and the nanofluid exhibited dominant Newtonian flow behavior as viscosity remained nearly constant up to a shear rate of 100 s1. Numerical simulations of the experimentally evaluated nanofluids are performed to evaluate the effect on a CPV/T collector using a three-dimensional transient model. The numerical analysis revealed significant improvements in thermal and electrical energy conversion performance, as well as cooling effects. At a concentrated solar irradiance of 5000 W/m2 and an optimal flow rate of 3 L/min, the highest thermal and electrical energy conversion efficiency enhancements are found to be 12.8% and 2%, respectively.

  • Název v anglickém jazyce

    MXene incorporated nanofluids for energy conversion performance augmentation of a concentrated photovoltaic/ thermal solar collector

  • Popis výsledku anglicky

    This research work introduces emerging two-dimensional (2D) MXene (Ti3C2) and Therminol55 oil-based mono and hybrid nanofluids for concentrated photovoltaic/thermal (CPV/T) solar systems. This study focuses on the experimental formulation, characterization of properties, and performance evaluation of the nanofluid-based CPV/T system. Thermo-physical (conductivity, viscosity, and rheology), optical (UV-vis and FT-IR), and stability (Zeta potential and TGA) properties of the formulated nanofluids are characterized at 0.025 wt.% to 0.125 wt.% concentrations of dispersed particles using experimental analysis. By suspending the nanomaterials, photo-thermal energy conversion is improved considerably, up to 85.98%. The thermal conductivity of pure oil is increased by adding Ti3C2 and CuO nanomaterials. The highest enhancements of up to 84.55% and 80.03% are observed for the TH-55/Ti3C2 and TH-55/ Ti3C2 + CuO nanofluids, respectively. Furthermore, dynamic viscosity decreased dramatically over the temperature range investigated (25C-105C), and the nanofluid exhibited dominant Newtonian flow behavior as viscosity remained nearly constant up to a shear rate of 100 s1. Numerical simulations of the experimentally evaluated nanofluids are performed to evaluate the effect on a CPV/T collector using a three-dimensional transient model. The numerical analysis revealed significant improvements in thermal and electrical energy conversion performance, as well as cooling effects. At a concentrated solar irradiance of 5000 W/m2 and an optimal flow rate of 3 L/min, the highest thermal and electrical energy conversion efficiency enhancements are found to be 12.8% and 2%, respectively.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20303 - Thermodynamics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Energy Research

  • ISSN

    0363-907X

  • e-ISSN

    1099-114X

  • Svazek periodika

    2022 (46)

  • Číslo periodika v rámci svazku

    15

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    21

  • Strana od-do

    24301-24321

  • Kód UT WoS článku

    000911442800214

  • EID výsledku v databázi Scopus

    2-s2.0-85137991021