Innovative UAV LiDAR Generated Point-Cloud Processing Algorithm in Python for Unsupervised Detection and Analysis of Agricultural Field-Plots
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389030%3A_____%2F21%3A00551116" target="_blank" >RIV/61389030:_____/21:00551116 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15310/21:73610712
Výsledek na webu
<a href="http://doi.org/10.3390/rs13163169" target="_blank" >http://doi.org/10.3390/rs13163169</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/rs13163169" target="_blank" >10.3390/rs13163169</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Innovative UAV LiDAR Generated Point-Cloud Processing Algorithm in Python for Unsupervised Detection and Analysis of Agricultural Field-Plots
Popis výsledku v původním jazyce
The estimation of plant growth is a challenging but key issue that may help us to understand crop vs. environment interactions. To perform precise and high-throughput analysis of plant growth in field conditions, remote sensing using LiDAR and unmanned aerial vehicles (UAV) has been developed, in addition to other approaches. Although there are software tools for the processing of LiDAR data in general, there are no specialized tools for the automatic extraction of experimental field blocks with crops that represent specific “points of interest”. Our tool aims to detect precisely individual field plots, small experimental plots (in our case 10 m2) which in agricultural research represent the treatment of a single plant or one genotype in a breeding trial. Cutting out points belonging to the specific field plots allows the user to measure automatically their growth characteristics, such as plant height or plot biomass. For this purpose, new method of edge detection was combined with Fourier transformation to find individual field plots. In our case study with winter wheat, two UAV flight levels (20 and 40 m above ground) and two canopy surface modelling methods (raw points and B-spline) were tested. At a flight level of 20 m, our algorithm reached a 0.78 to 0.79 correlation with LiDAR measurement with manual validation (RMSE = 0.19) for both methods. The algorithm, in the Python 3 programming language, is designed as open-source and is freely available publicly, including the latest updates.
Název v anglickém jazyce
Innovative UAV LiDAR Generated Point-Cloud Processing Algorithm in Python for Unsupervised Detection and Analysis of Agricultural Field-Plots
Popis výsledku anglicky
The estimation of plant growth is a challenging but key issue that may help us to understand crop vs. environment interactions. To perform precise and high-throughput analysis of plant growth in field conditions, remote sensing using LiDAR and unmanned aerial vehicles (UAV) has been developed, in addition to other approaches. Although there are software tools for the processing of LiDAR data in general, there are no specialized tools for the automatic extraction of experimental field blocks with crops that represent specific “points of interest”. Our tool aims to detect precisely individual field plots, small experimental plots (in our case 10 m2) which in agricultural research represent the treatment of a single plant or one genotype in a breeding trial. Cutting out points belonging to the specific field plots allows the user to measure automatically their growth characteristics, such as plant height or plot biomass. For this purpose, new method of edge detection was combined with Fourier transformation to find individual field plots. In our case study with winter wheat, two UAV flight levels (20 and 40 m above ground) and two canopy surface modelling methods (raw points and B-spline) were tested. At a flight level of 20 m, our algorithm reached a 0.78 to 0.79 correlation with LiDAR measurement with manual validation (RMSE = 0.19) for both methods. The algorithm, in the Python 3 programming language, is designed as open-source and is freely available publicly, including the latest updates.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10608 - Biochemistry and molecular biology
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000827" target="_blank" >EF16_019/0000827: Rostliny jako prostředek udržitelného globálního rozvoje</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Remote Sensing
ISSN
2072-4292
e-ISSN
2072-4292
Svazek periodika
13
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
23
Strana od-do
3169
Kód UT WoS článku
000689861600001
EID výsledku v databázi Scopus
2-s2.0-85113671926