R software for QSAR analysis in phytopharmacological studies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389030%3A_____%2F23%3A00576353" target="_blank" >RIV/61389030:_____/23:00576353 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15310/23:73622886
Výsledek na webu
<a href="https://doi.org/10.1002/pca.3239" target="_blank" >https://doi.org/10.1002/pca.3239</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/pca.3239" target="_blank" >10.1002/pca.3239</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
R software for QSAR analysis in phytopharmacological studies
Popis výsledku v původním jazyce
Introduction: In recent decades, quantitative structure–activity relationship (QSAR) analysis has become an important method for drug design and natural product research. With the availability of bioinformatic and cheminformatic tools, a vast number of descriptors have been generated, making it challenging to select potential independent variables that are accurately related to the dependent response variable. Objective: The objective of this study is to demonstrate various descriptor selection procedures, such as the Boruta approach, all subsets regression, the ANOVA approach, the AIC method, stepwise regression, and genetic algorithm, that can be used in QSAR studies. Additionally, we performed regression diagnostics using R software to test parameters such as normality, linearity, residual histograms, PP plots, multicollinearity, and homoscedasticity. Results: The workflow designed in this study highlights the different descriptor selection procedures and regression diagnostics that can be used in QSAR studies. The results showed that the Boruta approach and genetic algorithm performed better than other methods in selecting potential independent variables. The regression diagnostics parameters tested using R software, such as normality, linearity, residual histograms, PP plots, multicollinearity, and homoscedasticity, helped in identifying and diagnosing model errors, ensuring the reliability of the QSAR model. Conclusion: QSAR analysis is vital in drug design and natural product research. To develop a reliable QSAR model, it is essential to choose suitable descriptors and perform regression diagnostics. This study offers an accessible, customizable approach for researchers to select appropriate descriptors and diagnose errors in QSAR studies.
Název v anglickém jazyce
R software for QSAR analysis in phytopharmacological studies
Popis výsledku anglicky
Introduction: In recent decades, quantitative structure–activity relationship (QSAR) analysis has become an important method for drug design and natural product research. With the availability of bioinformatic and cheminformatic tools, a vast number of descriptors have been generated, making it challenging to select potential independent variables that are accurately related to the dependent response variable. Objective: The objective of this study is to demonstrate various descriptor selection procedures, such as the Boruta approach, all subsets regression, the ANOVA approach, the AIC method, stepwise regression, and genetic algorithm, that can be used in QSAR studies. Additionally, we performed regression diagnostics using R software to test parameters such as normality, linearity, residual histograms, PP plots, multicollinearity, and homoscedasticity. Results: The workflow designed in this study highlights the different descriptor selection procedures and regression diagnostics that can be used in QSAR studies. The results showed that the Boruta approach and genetic algorithm performed better than other methods in selecting potential independent variables. The regression diagnostics parameters tested using R software, such as normality, linearity, residual histograms, PP plots, multicollinearity, and homoscedasticity, helped in identifying and diagnosing model errors, ensuring the reliability of the QSAR model. Conclusion: QSAR analysis is vital in drug design and natural product research. To develop a reliable QSAR model, it is essential to choose suitable descriptors and perform regression diagnostics. This study offers an accessible, customizable approach for researchers to select appropriate descriptors and diagnose errors in QSAR studies.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10609 - Biochemical research methods
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Phytochemical Analysis
ISSN
0958-0344
e-ISSN
1099-1565
Svazek periodika
34
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
709-728
Kód UT WoS článku
001020077900001
EID výsledku v databázi Scopus
2-s2.0-85164190073