QSAR Modeling Based on Conformation Ensembles Using a Multi-Instance Learning Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15110%2F21%3A73610525" target="_blank" >RIV/61989592:15110/21:73610525 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jcim.1c00692" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jcim.1c00692</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jcim.1c00692" target="_blank" >10.1021/acs.jcim.1c00692</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
QSAR Modeling Based on Conformation Ensembles Using a Multi-Instance Learning Approach
Popis výsledku v původním jazyce
Modern QSAR approaches have wide practical applications in drug discovery for designing potentially bioactive molecules. If such models are based on the use of 2D descriptors, important information contained in the spatial structures of molecules is lost. The major problem in constructing models using 3D descriptors is the choice of a putative bioactive conformation, which affects the predictive performance. The multi-instance (MI) learning approach considering multiple conformations in model training could be a reasonable solution to the above problem. In this study, we implemented several multi-instance algorithms, both conventional and based on deep learning, and investigated their performance. We compared the performance of MI-QSAR models with those based on the classical single-instance QSAR (SI-QSAR) approach in which each molecule is encoded by either 2D descriptors computed for the corresponding molecular graph or 3D descriptors issued for a single lowest energy conformation. The calculations were carried out on 175 data sets extracted from the ChEMBL23 database. It is demonstrated that (i) MI-QSAR outperforms SI-QSAR in numerous cases and (ii) MI algorithms can automatically identify plausible bioactive conformations.
Název v anglickém jazyce
QSAR Modeling Based on Conformation Ensembles Using a Multi-Instance Learning Approach
Popis výsledku anglicky
Modern QSAR approaches have wide practical applications in drug discovery for designing potentially bioactive molecules. If such models are based on the use of 2D descriptors, important information contained in the spatial structures of molecules is lost. The major problem in constructing models using 3D descriptors is the choice of a putative bioactive conformation, which affects the predictive performance. The multi-instance (MI) learning approach considering multiple conformations in model training could be a reasonable solution to the above problem. In this study, we implemented several multi-instance algorithms, both conventional and based on deep learning, and investigated their performance. We compared the performance of MI-QSAR models with those based on the classical single-instance QSAR (SI-QSAR) approach in which each molecule is encoded by either 2D descriptors computed for the corresponding molecular graph or 3D descriptors issued for a single lowest energy conformation. The calculations were carried out on 175 data sets extracted from the ChEMBL23 database. It is demonstrated that (i) MI-QSAR outperforms SI-QSAR in numerous cases and (ii) MI algorithms can automatically identify plausible bioactive conformations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10608 - Biochemistry and molecular biology
Návaznosti výsledku
Projekt
<a href="/cs/project/LTARF18013" target="_blank" >LTARF18013: Zvýšení úspěšnosti primárního skríningu biologicky aktivních látek pomocí výpočetních modelů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Information and Modeling
ISSN
1549-9596
e-ISSN
—
Svazek periodika
61
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
4913-4923
Kód UT WoS článku
000711200000011
EID výsledku v databázi Scopus
2-s2.0-85116592231