Multi-Instance Learning Approach to the Modeling of Enantioselectivity of Conformationally Flexible Organic Catalysts
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15110%2F23%3A73622001" target="_blank" >RIV/61989592:15110/23:73622001 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jcim.3c00393" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jcim.3c00393</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jcim.3c00393" target="_blank" >10.1021/acs.jcim.3c00393</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-Instance Learning Approach to the Modeling of Enantioselectivity of Conformationally Flexible Organic Catalysts
Popis výsledku v původním jazyce
Computational design of chiral organic catalysts for asymmetric synthesis is a promising technology that can significantly reduce the material and human resources required for the preparation of enantiopure compounds. Herein, for the modeling of catalysts' enantioselectivity, we propose to use the multi-instance learning approach accounting for multiple catalyst conformers and requiring neither conformer selection nor their spatial alignment. A catalyst was represented by an ensemble of conformers, each encoded by three-dimesinonal (3D) pmapper descriptors. A catalyzed reactant transformation was converted into a single molecular graph, a condensed graph of reaction, encoded by 2D fragment descriptors. A whole chemical reaction was finally encoded by concatenated 3D catalyst and 2D transformation descriptors. The performance of the proposed method was demonstrated in the modeling of the enantioselectivity of homogeneous and phase-transfer reactions and compared with the state-of-the-art approaches.
Název v anglickém jazyce
Multi-Instance Learning Approach to the Modeling of Enantioselectivity of Conformationally Flexible Organic Catalysts
Popis výsledku anglicky
Computational design of chiral organic catalysts for asymmetric synthesis is a promising technology that can significantly reduce the material and human resources required for the preparation of enantiopure compounds. Herein, for the modeling of catalysts' enantioselectivity, we propose to use the multi-instance learning approach accounting for multiple catalyst conformers and requiring neither conformer selection nor their spatial alignment. A catalyst was represented by an ensemble of conformers, each encoded by three-dimesinonal (3D) pmapper descriptors. A catalyzed reactant transformation was converted into a single molecular graph, a condensed graph of reaction, encoded by 2D fragment descriptors. A whole chemical reaction was finally encoded by concatenated 3D catalyst and 2D transformation descriptors. The performance of the proposed method was demonstrated in the modeling of the enantioselectivity of homogeneous and phase-transfer reactions and compared with the state-of-the-art approaches.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Information and Modeling
ISSN
1549-9596
e-ISSN
1549-960X
Svazek periodika
63
Číslo periodika v rámci svazku
21
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
6629-6641
Kód UT WoS článku
001123450500001
EID výsledku v databázi Scopus
2-s2.0-85176968789