Simulation of pattern recognition system via modular neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F11%3AA13014MN" target="_blank" >RIV/61988987:17310/11:A13014MN - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Simulation of pattern recognition system via modular neural networks
Popis výsledku v původním jazyce
It is the purpose of the present paper to suggest an approach to utilization of mathematical models of a classification system for pattern recognition. Pattern recognition has a long history but has recently become much more widespread as the automated capture of signals and images has become cheaper. Very many of the applications of neural networks are to classification, and so are within the field of pattern recognition. This article describes a classification system for pattern recognition based on artificial neural networks with modular architecture. We use a three layer feedforward network model that is learned with the backpropagation algorithm for all experiments. Our experimental recognition objects were digits and their type fonts. We also propose outline further development on this topic in conclusion.
Název v anglickém jazyce
Simulation of pattern recognition system via modular neural networks
Popis výsledku anglicky
It is the purpose of the present paper to suggest an approach to utilization of mathematical models of a classification system for pattern recognition. Pattern recognition has a long history but has recently become much more widespread as the automated capture of signals and images has become cheaper. Very many of the applications of neural networks are to classification, and so are within the field of pattern recognition. This article describes a classification system for pattern recognition based on artificial neural networks with modular architecture. We use a three layer feedforward network model that is learned with the backpropagation algorithm for all experiments. Our experimental recognition objects were digits and their type fonts. We also propose outline further development on this topic in conclusion.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Aplimat - Journal of Applied Mathematics
ISSN
1337-6365
e-ISSN
—
Svazek periodika
4
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
8
Strana od-do
327-334
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—