Symmetries of a dynamical system represented by singular Lagrangians
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F12%3AA140168W" target="_blank" >RIV/61988987:17310/12:A140168W - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Symmetries of a dynamical system represented by singular Lagrangians
Popis výsledku v původním jazyce
Dynamical properties of singular Lagrangian systems differ from those of classical Lagrangians of the form L=T-V. Even less is known about symmetries and conservation laws of such Lagrangians and of their corresponding actions. In this article we study symmetries and conservation laws of a concrete singular Lagrangian system interesting in physics. We solve the problem of determining all point symmetries of the Lagrangian and of its Euler-Lagrange form, i.e. of the action. It is known that every point symmetry of a Lagrangian is a point symmetry of its Euler-Lagrange form, and this of course happens also in our case. We are also interested in the converse statement, namely if to every point symmetry of the Euler-Lagrange form E there exists a Lagrangian for E such that the symmetry is a point symmetry of the Lagrangian In the case studied the answer is affirmative, moreover we have found that the corresponding Lagrangians are all of order one.
Název v anglickém jazyce
Symmetries of a dynamical system represented by singular Lagrangians
Popis výsledku anglicky
Dynamical properties of singular Lagrangian systems differ from those of classical Lagrangians of the form L=T-V. Even less is known about symmetries and conservation laws of such Lagrangians and of their corresponding actions. In this article we study symmetries and conservation laws of a concrete singular Lagrangian system interesting in physics. We solve the problem of determining all point symmetries of the Lagrangian and of its Euler-Lagrange form, i.e. of the action. It is known that every point symmetry of a Lagrangian is a point symmetry of its Euler-Lagrange form, and this of course happens also in our case. We are also interested in the converse statement, namely if to every point symmetry of the Euler-Lagrange form E there exists a Lagrangian for E such that the symmetry is a point symmetry of the Lagrangian In the case studied the answer is affirmative, moreover we have found that the corresponding Lagrangians are all of order one.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F09%2F0981" target="_blank" >GA201/09/0981: Globální analýza a geometrie fibrovaných prostorů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Communications in Mathematics
ISSN
1804-1388
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
10
Strana od-do
23-32
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—