Distribution functions for subsequences of the Van der Corput sequence
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F13%3AA14019QS" target="_blank" >RIV/61988987:17310/13:A14019QS - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Distribution functions for subsequences of the Van der Corput sequence
Popis výsledku v původním jazyce
For an integer b>1 let (phi (b(n)) denote the Van der Corput sequence base b in [0,1). Answering a question of O. Strauch, C. Aisleitner and M. Hofer showed that the distribution function of (phi(b(n)),phi(b(n+1))... on [0,1) exists and is a copula. In this note we show that this phenomenon extends to a broad class of subsequences of the van der Corput sequences.
Název v anglickém jazyce
Distribution functions for subsequences of the Van der Corput sequence
Popis výsledku anglicky
For an integer b>1 let (phi (b(n)) denote the Van der Corput sequence base b in [0,1). Answering a question of O. Strauch, C. Aisleitner and M. Hofer showed that the distribution function of (phi(b(n)),phi(b(n+1))... on [0,1) exists and is a copula. In this note we show that this phenomenon extends to a broad class of subsequences of the van der Corput sequences.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INDAGAT MATH NEW SER
ISSN
0019-3577
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
593-601
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—